992 resultados para gram stain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactic acid bacteria ( LAB) are currently used by food industries because of their ability to produce metabolites with antimicrobial activity against gram-positive pathogens and spoilage microorganisms. The objectives of this study were to identify naturally occurring bacteriocinogenic or bacteriocinogenic-like LAB in raw milk and soft cheese and to detect the presence of nisin-coding genes in cultures identified as Lactococcus lactis. Lactic acid bacteria cultures were isolated from 389 raw milk and soft cheese samples and were later characterized for the production of antimicrobial substances against Listeria monocytogenes. Of these, 58 (14.9%) LAB cultures were identified as antagonistic; the nature of this antagonistic activity was then characterized via enzymatic tests to confirm the proteinaceous nature of the antimicrobial substances. In addition, 20 of these antagonistic cultures were selected and submitted to genetic sequencing; they were identified as Lactobacillus plantarum (n = 2) and Lactococcus lactis ssp. lactis (n = 18). Nisin genes were identified by polymerase chain reaction in 7 of these cultures. The identified bacteriocinogenic and bacteriocinogenic-like cultures were highly variable concerning the production and activity of antimicrobial substances, even when they were genetically similar. The obtained results indicated the need for molecular and phenotypic methodologies to properly characterize bacteriocinogenic LAB, as well as the potential use of these cultures as tools to provide food safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nisin is a natural additive for conservation of food, and can also be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Grain-negative bacteria. In this paper we present a potentially scalable and cost-effective way to purify commercial and biosynthesized in bioreactor nisin, including simultaneously removal of impurities and contaminants, increasing nisin activity. Aqueous two-phase micellar systems (ATPMS) are considered promising for bioseparation and purification purposes. Triton X-114 was chosen as the as phase-forming surfactant because it is relatively mild to proteins and it also forms two coexisting phases within a convenient temperature range. Nisin activity was determined by the agar diffusion assay utilizing Lactobacillus sake as a sensitive indicator microorganism. Results indicated that nisin partitions preferentially to the micelle rich-phase, despite the surfactant concentration tested, and its antimicrobial activity increases. The successful implementation of this peptide partitioning, from a suspension containing other compounds, represents an important step towards developing a separation method for nisin, and more generally, for other biomolecules of interest. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present article describes an L-amino acid oxidase from Bothrops atrox snake venom as with antiprotozoal activities in Trypanosoma cruzi and in different species of Leishmania (Leishmania braziliensis, Leishmania donovani and Leishmania major). Leishmanicidal effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Leishmania spp. cause a spectrum of diseases, ranging from self-healing ulcers to disseminated and often fatal infections, depending on the species involved and the host`s immune response. BatroxLAAO also displays bactericidal activity against both Gram-positive and Gram-negative bacteria. The apoptosis induced by BatroxLAAO on HL-60 cell lines and PBMC cells was determined by morphological cell evaluation using a mix of fluorescent dyes. As revealed by flow cytometry analysis, suppression of cell proliferation with BatroxLAAO was accompanied by the significant accumulation of cells in the G0/G1 phase boundary in HL-60 cells. BatroxLAAO at 25 mu g/mL and 50 mu g/mL blocked G0-G1 transition, resulting in G0/G1 phase cell cycle arrest, thereby delaying the progression of cells through S and G2/M phase in HL-60 cells. This was shown by an accentuated decrease in the proportion of cells in S phase, and the almost absence of G2/M phase cell population. BatroxLAAO is an interesting enzyme that provides a better understanding of the ophidian envenomation mechanism, and has biotechnological potential as a model for therapeutic agents. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expression of ABO(H) blood group antigens causes deletion of cells that generate self-specific antibodies to these antigens but this deletion limits adaptive immunity toward pathogens bearing cognate blood group antigens. To explore potential defense mechanisms against such pathogens, given these limitations in adaptive immunity, we screened for innate proteins that could recognize human blood group antigens. Here we report that two innate immune lectins, galectin-4 (Gal-4) and Gal-8, which are expressed in the intestinal tract, recognize and kill human blood group antigen-expressing Escherichia coli while failing to alter the viability of other E. coli strains or other Gram-negative or Gram-positive organisms both in vitro and in vivo. The killing activity of both Gal-4 and Gal-8 is mediated by their C-terminal domains, occurs rapidly and independently of complement and is accompanied by disruption of membrane integrity. These results demonstrate that innate defense lectins can provide immunity against pathogens that express blood group-like antigens on their surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crude extracts of a callus culture (two culture media) and adult plants (two collections) from Alternanthera tenella Colla (Amaranthaceae) were evaluated for their antibacterial and antifungal activity, in order to investigate the maintenance of antimicrobial activity of the extracts obtained from plants in vivo and in vitro. The antibacterial and antifungal activity was determined against thirty strains of microorganisms including Gram-positive and Gram-negative bacteria, yeasts and dermatophytes. Ethanolic and hexanic extracts of adult plants collected during the same period of the years 1997 and 2002 [Ribeirao Preto (SP), collections 1 and 2] and obtained from plant cell callus culture in two different hormonal media (AtT43 and AtT11) inhibited the growth of bacteria, yeasts and dermatophytes with inhibition halos between 6 and 20 mm. For the crude extracts of adult plants bioassay-guided fractionation, purification, and isolation were performed by chromatographic methods, and the structures of the isolated compounds were established by analysis of chemical and spectral evidences (UV, IR, NMR and ES-MS). Steroids, saponins and flavonoids (aglycones and C-glycosides) were isolated. The minimum inhibitory concentration (MIC) of the isolated compounds varied from 50 to 500 mu g/mL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study examined effects of ear asymmetry, handedness, and gender on distortion-product otoacoustic emissions (DPOAEs) obtained from schoolchildren. A total of 1003 children (528 boys and 475 girls), with a mean age of 6.2 years (SD = 0.4, range = 5.2-7.9 years), were tested in a quiet room at their schools using the GSI-60 DPOAE system. A distortion-product (DP)-gram was obtained for each ear, with f2 varying from 1.1 to 6.0 kHz and the ratio of f2/f1 at 1.21. The signal-to-noise ratios (SNRs) (DPOAE amplitude minus the mean noise floor) at the tested frequencies 1.1, 1.5, 1.9, 2.4, 3.0, 3.8, 4.8, and 6.0 kHz were measured. The results revealed a small but significant difference in SNR between ears, with right ears showing a higher mean SNR than left ears at 1.9, 3.0, 3.8, and 6.0 kHz. At these frequencies, the difference in mean SNR between ears was less than 1 dB. A significant gender effect was also found. Girls exhibited a higher SNR than boys at 3.8, 4.8, and 6.0 kHz. The difference in mean SNR, as a result of the gender effect, was about 1 to 2 dB at these frequencies. There was no significant difference in mean SNR between left-handed and right-handed children for all tested frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background & Aims: Nonalcoholic steatohepatitis (NASH) is a chronic liver disease that occasionally progresses to cirrhosis but usually has a benign course. The aim of this study was to investigate the role of the hemochromatosis mutation Cys282Tyr in development of the mild hepatic iron overload found in some patients with NASH and its association with hepatic damage in these patients. Methods: Fifty-one patients with NASH were studied. The presence of the Cys282Tyr mutation was tested in all patients, and the data were analyzed with respect to the histological grade of steatosis, inflammation, Perls' staining, hepatic iron concentration (HIC), and serum iron indices. Results: Thirty-one percent of patients with NASH were either homozygous or heterozygous for the Cys282Tyr mutation. This mutation was significantly associated with Perls' stain grade (P < 0.005), HIC (P < 0.005), and transferrin saturation percentage (P < 0.005) but not with serum ferritin levels. Linear regression analysis showed that increased hepatic iron (Perls' stain or HIC) had the greatest association with the severity of fibrosis (P < 0.0001). Conclusions: The Cys282Tyr mutation is responsible for most of the mild iron overload found in NASH and thus has a significant association with hepatic damage in these patients. Heterozygosity for the hemochromatosis gene mutation therefore cannot always be considered benign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microorganisms that hydrolyse the ester linkages between phenolic acids and polysaccharides in plant cell walls are potential sources of enzymes for the degradation of lignocellulosic waste. An anaerobic, mesophilic, spore-forming, xylanolytic bacterium with high hydroxy cinnamic acid esterase activity was isolated from the gut of the grass-eating termite Tumilitermes pastinator. The bacterium was motile and rod-shaped, stained gram-positive, had an eight-layered cell envelope, and.formed endospores. Phylogenetic analysis based on 16S rRNA indicated that the bacterium is closely related to Clostridium xylanolyticum and is grouped with polysaccharolytic strains of clostridia. A wide range of carbohydrates were fermented, and growth was stimulated by either xylan or cellobiose as substrates. The bacterium hydrolysed and then hydrogenated the hydroxy cinnamic acids (ferulic and p-coumaric acids), which are esterified to arabinoxylan in plant cell walls. Three cytoplasmic enzymes with hydroxy cinnamic acid esterase activity were identified using non-denaturing gel electrophoresis. This bacterium possesses an unusual multilayered cell envelope in which both leaflets of the cytoplasmic membrane, the peptidoglycan layer and the S layer are clearly discernible. The fate of all these components was easily followed throughout the endospore formation process. The peptidoglycan component persisted during the entire morphogenesis. It was seen to enter the septum and to pass with the engulfing membranes to surround the prespore. It eventually expanded to form the cortex, verification for the peptidoglycan origin of the cortex. Sporogenic vesicles, which are derived from the cell wall peptidoglycan, were associated with the engulfment process. Spore coat fragments appeared early, in stage II, though spore coat formation was not complete until after cortex formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The small amounts of antibacterial peptides that can be isolated from insects do not allow detailed studies of their range of activity, side-chain sugar requirements, or their conformation, factors that frequently play roles in the mode of action. In this paper, we report the solid-phase step-by-step synthesis of diptericin, an 82-mer peptide, originally isolated from Phormia terranovae. The unglycosylated peptide was purified to homogeneity by conventional reversed-phase high performance liquid chromatography, and its activity spectrum was compared to that Of synthetic unglycosylated drosocin, which shares strong sequence homology with diptericin's N-terminal domain. Diptericin appeared to have antibacterial activity:for only a limited number of Gram-negative bacteria. Diptericin's submicromolar potency against Escherichia coli strains indicated that, in a manner similar to drosocin, the presence of the carbohydrate side chain is not,necessary to kill bacteria. Neither the N-terminal, drosocin-analog fragment, nor the C-terminal, glycine-rich attacin-analog region was active against any of the bacterial strains studied, regardless of whether the Gal-GalNAc disaccharide units were attached. This suggested that the active site of diptericin fell outside the drosocin or attacin homology domains. In addition, the conformation of diptericin did not seem to play a role in the antibacterial activity, as was demonstrated by the complete lack of ordered structure by two-dimensional nuclear magnetic resonance spectroscopy and circular dichroism. Diptericin completely killed bacteria within I h, considerably faster than drosocin and the attacins; unlike some other, fast-acting antibacterial peptides, diptericin did not lyse normal mammalian cells. Taken together, these data suggest diptericin does not belong to any known class of antibacterial peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A previously unknown chemolithoautotrophic arsenite-oxidizing bacterium has been isolated from a gold mine in the Northern Territory of Australia. The organism, designated NT-26, was found to be a gram-negative motile rod with two subterminal flagella. In a minimal medium containing only arsenite as the electron donor (5 mM), oxygen as the electron acceptor, and carbon dioxide-bicarbonate as the carbon source, the doubling time for chemolithoautotrophic growth was 7.6 h. Arsenite oxidation was found to be catalyzed by a periplasmic arsenite oxidase (optimum pH, 5.5). Based upon 16S rDNA phylogenetic sequence analysis, NT-26 belongs to the Agrobacterium/Rhizbium branch of the alpha-Proteobacteria and may represent a new species. This recently discovered organism is the most rapidly growing chemolithoautotrophic arsenite oxidizer known.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At a time of the emergence of drug-resistant bacterial strains, the development of antimicrobial compounds with novel mechanisms of action is of considerable interest. Perhaps the most promising among these is a family of antibacterial peptides originally isolated from insects. These were shown to act in a stereospecific manner on an as-yet unidentified target bacterial protein. One of these peptides, drosocin, is inactive in vivo due to the rapid decomposition in mammalian sera. However, another family member, pyrrhocoricin, is significantly more stable, has increased in vitro efficacy against Gram-negative bacterial strains, and if administered alone, as we show here, is devoid of in vitro or in vivo toxicity. At low doses, pyrrhocoricin protected mice against Escherichia call infection, but at a higher dose augmented the infection of compromised animals. Analogs of pyrrhocoricin were, therefore, synthesized to further improve protease resistance and reduce toxicity. A linear derivative containing unnatural amino acids at both termini showed high potency and lack of toxicity in vivo and an expanded cyclic analog displayed broad activity spectrum in vitro. The bioactive conformation of native pyrrhocoricin was determined by nuclear magnetic resonance spectroscopy, and similar to drosocin, reverse turns were identified as pharmacologically important elements at the termini, bridged by an extended peptide domain. Knowledge of the primary and secondary structural requirements for in vivo activity of these peptides allows the design of novel antibacterial drug leads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A genomic region containing the fatty acid biosynthetic (fab) genes was isolated from the sugarcane leaf-scald pathogen Xanthomonasalbilineans. The order and predicted products of fabG (beta -ketoacyl reductase), acpP (acyl carrier protein), fabF(ketoacyl synthase II) and downstream genes in X. albilineans are very similar to those in Escherichia coli, with one exception. Sequence analysis, confirmed by insertional knockout and specific substrate feeding experiments, shows that the position occupied by pabC (encoding aminodeoxychorismate lyase) in other bacteria is occupied instead by pabB (encoding aminodeoxychorismate synthase component I) in X. albilineans. Downstream of pabB, X. albilineans resumes the arrangement common to characterized Gram-negative bacteria, with three transcriptionally coupled genes, encoding an ORF340 protein of undefined function, thymidylate kinase and delta' subunit of DNA polymerase III holoenzyme (HolB). Different species may obtain a common advantage from coordinated regulation of the same biosynthetic pathways using different genes in this region. (C) 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip((R)) microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug specifically targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the production of a hepatotoxic, cyclic heptapeptide, microcystin, by a filamentous branched cyanobacterium belonging to the order Stigonematales, genus Fischerella. The freshwater Fischerella sp. strain CENA161 was isolated from spring water in a small concrete dam in Piracicaba, Sao Paulo State, Brazil, and identified by combining a morphological description with 16S rRNA gene sequencing and phylogenetic analysis. Microcystin (MCYST) analysis performed using an ELISA assay on cultured cells gave positive results. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis detected 33.6 mu g MCYST-LR per gram dry weight of cyanobacterial cells. Microcystin profile revealed by quadrupole time-of-flight tandem mass spectrometry (Q-TOF-MS/MS) analysis confirmed the production of MCYST-LR. Furthermore, genomic DNA was analyzed by PCR for sequences similar to the ketosynthase (KS) domain of the type I polyketide synthase gene, which is involved in microcystin biosynthesis. This revealed the presence of a KS nucleotide fragment similar to the mcyD and ndaD genes of the microcystin and nodularin synthetase complexes. Phylogenetic analysis grouped the Fischerella KS sequence together with mcyD sequences of the three known microcystin synthetase operon (Microcystis, Planktothrix and Anabaena) and ndaD of the nodularin synthetase operon, with 100% bootstrap support. Our findings demonstrate that Fischerella sp. CENA161 produces MYCST-LR and for the first time identify a nucleotide sequence putatively involved in microcystin synthesis in this genus. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipopeptides produced by Bacillus subtilis are known for their high antifungal activity. The aim of this paper is to show that at high concentration they can damage the surface ultra-structure of bacterial cells. A lipopeptide extract containing iturin and surfactin (5 mg mL-1) was prepared after isolation from B. subtilis (strain OG) by solid phase extraction. Analysis by atomic force microscope (AFM) showed that upon evaporation, lipopeptides form large aggregates (0.1-0.2 mu m2) on the substrates silicon and mica. When the same solution is incubated with fungi and bacteria and the system is allowed to evaporate, dramatic changes are observed on the cells. AFM micrographs show disintegration of the hyphae of Phomopsis phaseoli and the cell walls of Xanthomonas campestris and X. axonopodis. Collapses to fungal and bacterial cells may be a result of formation of pores triggered by micelles and lamellar structures, which are formed above the critical micelar concentration of lipopeptides. As observed for P. phaseoli, the process involves binding, solubilization, and formation of novel structures in which cell wall components are solubilized within lipopeptide vesicles. This is the first report presenting evidences that vesicles of uncharged and negatively charged lipopeptides can alter the morphology of gram-negative bacteria.