998 resultados para golfinho-pintado-do-Atlântico


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências do Mar, especialidade em Ecologia Marinha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) O leitor que já possua Cartão de Cidadão poderá constatar que o algarismo suplementar do BI continua a marcar presença no novo documento: surge à frente do antigo número do BI, que se passou a designar por Número de Identificação Civil (NIC), imediatamente antes de duas letras. Mas qual é o papel deste algarismo? Na verdade, o algarismo suplementar não é assim tão misterioso. É simplesmente um algarismo de controlo ou dígito de verificação (check digit), que tem como objetivo detetar erros que possam ocorrer na escrita ou leitura do número do BI. Apresente-se como exemplo o número 6235008 0, em que 0 é o algarismo suplementar. (...) Ficam assim desvendados alguns dos mistérios do Cartão de Cidadão. Mas podemos não ficar por aqui: isto porque o Número de Identificação da Segurança Social (NISS), disponível no verso do Cartão de Cidadão, também é um número de identificação com algarismo de controlo! E o curioso é que se utilizam números primos para o cálculo da soma de teste (chama-se primo a todo o número natural superior a um que tenha apenas dois divisores naturais distintos, o número um e ele próprio). Concretamente, utilizam-se os primeiros dez números primos: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado em Estudos Integrados dos Oceanos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Existem diferentes tipos de sistemas de identificação com check digit. A escolha do algoritmo a implementar deve satisfazer dois princípios: por um lado, é importante escolher um sistema eficaz que detete o maior número possível de erros; por outro lado, a sua utilização no terreno deve ser de alguma forma acessível, particularmente para quem tem de lidar diariamente com os números produzidos por esse algoritmo. Hoje em dia a utilização de meios eletrónicos revela-se muito eficaz, quer para gerar o algarismo de controlo de novos números, como para validar números que já se encontrem em circulação. Mesmo assim, há uma série de requisitos importantes a ter em conta quando se pretende implementar um novo sistema de identificação. Desde logo, a escolha do alfabeto, ou seja, dos símbolos a utilizar. Normalmente, opta-se por recorrer apenas aos dez algarismos vulgarmente utilizados, do 0 ao 9. É o caso do exemplo que se segue. O método desenvolvido pela IBM, também conhecido por algoritmo de Luhn, aplica-se à generalidade dos cartões de crédito: VISA e VISA Electron (em que o primeiro algarismo da esquerda é um 4), MarterCard (5), American Express (3) e Discover (6), entre outros. Considere-se o número de um cartão VISA: 4188 3600 4538 6426. Como é habitual, o algarismo de controlo é o primeiro algarismo da direita, ou seja, o algarismo das unidades (6). Para verificar se este número é válido, procede-se da seguinte forma (...). Há um algoritmo mais eficaz, desenvolvido por Verhoeff em 1969, que utiliza os mesmos símbolos (os algarismos do 0 a 9). Este sistema deteta 100% dos erros singulares, 100% das transposições de algarismos adjacentes e algumas das transposições intercaladas. Paradoxalmente, é um método pouco utilizado, talvez por necessitar de uma maior bagagem matemática.(...) Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201034571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...) Se nos predispusermos a alargar o alfabeto de símbolos ou a considerar mais de um algarismo de controlo, podemos obter algoritmos ainda mais eficazes na deteção de erros. É o caso dos algoritmos estabelecidos pela norma ISO/IEC 7064. Por exemplo, o algoritmo MOD 11-2 é utilizado para identificar as receitas médicas em Portugal e utiliza um símbolo adicional (o X, que representa o número 10). Já o algoritmo MOD 97-10 requer a utilização de dois algarismos de controlo e é empregue na emissão do Número de Identificação Bancária (NIB). (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comportamento alimentar oportunista do marimbá Diplodus argenteus (Perciformes, Sparidae): interação humana-peixe em dois sistemas de costões rochosos do SE e SU do Brasil. Esse artigo aborda dois tipos de comportamentos alimentares do marimbá Diplodus argenteus em dois sistemas de costões rochosos do Atlântico sul no Brasil. Essa espécie alimentou-se sobre o fundo e exibiu comportamentos ocasionais e oportunísticos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste artigo, vamos viajar no tempo e assistir ao nascimento do zero. (...) As origens da Matemática remontam a alguns milhares de anos antes das primeiras civilizações e derivaram da necessidade de contar objetos. Em primeiro lugar, foi necessário distinguir um objeto de muitos objetos (caçar um pássaro ou muitos pássaros). Com o passar do tempo, a linguagem desenvolveu-se para distinguir entre um, dois e muitos. Em seguida, um, dois, três e muitos. (...) O passo seguinte consistiu em agrupar objetos de forma a facilitar a contagem. (...) A verdade é que os antigos gostavam de contar com as partes do seu corpo. Os favoritos eram o 5 (uma mão), o 10 (as duas mãos) e o 20 (ambas as mãos e os pés). O sistema numérico de base 10 acabou por vingar em muitas culturas e isso refletiu-se no vocabulário que ainda hoje utilizamos. Em português, as palavras “onze”, “doze” e “treze” derivam do latim (undecim, duodecim e tredecim), significando “dez e um”, “dez e dois” e “dez e três”. (...) Os sistemas antigos de numeração não contemplaram o zero. A verdade é que ninguém precisava de registar “zero ovelhas” nem contar “zero aves”. Em vez de dizer “tenho zero lanças”, bastava afirmar “não tenho lanças”. Como não era preciso um número para expressar a falta de alguma coisa, não ocorreu a necessidade de atribuir um símbolo à ausência de objetos. (...) O sistema de numeração grego, tal como o egípcio, ignorou por completo o zero. O zero nasceu noutra zona do globo: no Oriente, concretamente, no Crescente Fértil do atual Iraque. O sistema de numeração babilónico era, de certa forma, invulgar. Os babilónios tinham um sistema sexagesimal, de base 60, e usavam apenas duas marcas para representar os seus números: uma cunha simples para representar o 1 e uma cunha dupla para representar o 10. (...) os babilónios tiveram uma excelente ideia: inventaram um sistema de numeração posicional, em que os números são representados por sequências de símbolos, sendo que o valor de cada símbolo depende da posição que ocupa nessa sequência. (...) Para os babilónios, o zero era um simples marca-lugar; um símbolo para uma casa em branco no ábaco. O zero não ocupava um lugar na hierarquia dos números; não tinha ainda assumido a sua posição estratégica na reta numérica como o número que separa os números positivos dos negativos. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Tal como os babilónios, os maias do México e da América Central criaram um sistema de numeração posicional. A diferença é que o sistema era vigesimal, de base 20. Os maias também recorriam ao zero para a escrita dos números e utilizavam dois tipos de dígitos (...) O sistema de numeração indiano acabou por evoluir de um sistema do tipo grego para um sistema do tipo babilónico (...) Os indianos encararam com naturalidade a existência de números negativos, bem como da reta numérica em que o zero assumia finalmente o estatuto de número com a posição estratégica de separar os números positivos dos negativos. (...) A própria palavra “zero” tem raízes hindu-árabes. O nome indiano para zero era sunya, que significava “vazio”. Os árabes transformaram-no em sifr. Por sua vez, os ocidentais adotaram uma designação que soasse a latim – zephirus, que é a raiz da nossa palavra “zero”. (...) No Ocidente, o medo do infinito e o horror ao vazio perpetuaram-se durante séculos. Partindo do universo pitagórico, Aristóteles e Ptolemeu defendiam um cosmos finito em extensão, mas cheio de matéria. O universo estava contido numa “casca de noz” revestida pela esfera das estrelas fixas. (...) A falta do zero não só impediu o desenvolvimento da Matemática no Ocidente como, indiretamente, introduziu alguma confusão no nosso calendário. Todos nos lembramos das dúvidas que surgiram com a viragem recente de século e milénio: deveríamos festejar a mudança de século e milénio na passagem de ano de 1999 para 2000 ou de 2000 para 2001? A resposta correta é a segunda opção e a justificação é simples: o nosso calendário não contempla o zero. (...) Com o Renascimento, o universo de casca de noz partiu-se, o vazio e o infinito ultrapassaram por completo os preconceitos da fundação aristotélica da Igreja e abriram caminho para um desenvolvimento notável da ciência e, em particular, da Matemática. O zero assumiu um papel chave no desenvolvimento de várias áreas da Matemática, entre elas destaca-se o cálculo diferencial e integral. O edifício matemático, que outrora tinha sido alicerçado partindo da necessidade de contar ovelhas e demarcar propriedades, erguia-se agora bem alto: as regras da Natureza podiam ser descritas por equações e a Matemática era a chave para desvendar os segredos do Universo. (...) O zero não pode ser ignorado. De facto, o zero está na base de muitos dos segredos do Universo, a desvendar neste novo milénio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A investigação em Neurociências Cognitivas tem sofrido um grande desenvolvimento nas últimas décadas, o que impulsionou algumas descobertas sobre a forma como funciona o nosso cérebro e como se desencadeia o processo de aprendizagem. Estas descobertas oferecem aos educadores, professores e encarregados de educação uma visão aprofundada sobre as experiências de aprendizagem que podem potenciar o desenvolvimento intelectual das crianças e adolescentes. Para além de abrir caminho a algumas ideias inovadoras, a investigação proveniente das Neurociências Cognitivas tem validado várias práticas do passado e questionado outras. Neste artigo, apresentamos alguns resultados dessa investigação sobre a forma como o nosso cérebro aprende Matemática. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As crianças das histórias — o António, a Rita, a Luana, a Maria, o Li e a Mariana — têm os mesmos receios e apreensões, sofrem as mesmas dúvidas e inquietações, têm as mesmas surpresas e alegrias das crianças dos nossos dias. O golfinho Necas faz a identificação das emoções e ensina aos amigos, numa linguagem simples e direta, a função que estas têm na nossa sobrevivência e a forma de as utilizar na promoção do bem-estar. Deste modo, o Necas ajuda-os a compreenderem o turbilhão interior que os move e como podem usar essa energia de forma positiva e saudável.? Dotar os mais novos dos requisitos necessários à compreensão de si mesmos, e de si na relação com os outros, é um primeiro passo de enorme importância que contribuirá para um crescimento mais equilibrado e para o sucesso na vida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Se analisarmos os principais estudos internacionais que avaliam o desempenho dos alunos a Matemática, Singapura é claramente um caso de sucesso. (...) Em Singapura, há um investimento claro na formação inicial e contínua dos professores, na disponibilização de bons materiais didáticos e nas medidas de acompanhamento individualizado dos alunos durante o ensino obrigatório. (...) Destacam-se três teorias edificadoras do currículo de Singapura: 1) A abordagem Concreto>Pictórico>Abstrato (CPA), que remonta aos trabalhos do psicólogo americano Jerome Bruner (Bruner fez 100 anos no passado dia 1 de outubro); 2) Os princípios de variabilidade matemática e percetiva, do educador matemático húngaro Zoltán Dienes (o criador dos blocos lógicos), que apontam para a necessidade de se usar diversos exemplos e contextos na aprendizagem de um conceito, assim como múltiplas representações; 3) O trabalho do psicólogo inglês Richard Skemp sobre a importância de se estabelecer conexões e de se compreender as relações matemáticas e a sua estrutura, de forma a alcançar um conhecimento profundo e duradouro das matérias (tudo deve estar relacionado). (...) Terminamos com mais alguns aspetos relevantes. Singapura adota uma abordagem em espiral de conceitos, competências e processos. Ao longo do seu percurso escolar, o aluno tem a oportunidade de trabalhar um mesmo tema mais do que uma vez, explorando múltiplas representações com diferentes níveis de profundidade. O Método de Singapura apresenta também uma forte componente visual. Um exemplo paradigmático é o modelo das barras, amplamente usado pelos alunos do Ensino Primário de Singapura (1.º e 2.º Ciclos em Portugal). (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Os number bonds (esquemas todo-partes) constituem um dos procedimentos didáticos mais famosos do Método de Singapura. Estas representações auxiliam a compreensão numérica basilar, nomeadamente a capacidade de decompor quantidades e a álgebra fundamental (adições e subtrações). Neste artigo, analisaremos o que são, quais as vantagens e a forma de utilização destes esquemas no 1.º ano de escolaridade. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente estudo consiste numa análise da cultura política no início do Liberalismo em Portugal, centrada sobre os deputados micaelenses nas Cortes Portuguesas que emergiram da revolução liberal de 1820 e, por outro lado, numa revisitação da revolução de 1821 em Ponta Delgada. Nesse contexto, a proposta de projecto apresentada por um dos deputados que visava a abolição dos vínculos na ilha de São Miguel e nos Açores foi o mote para esta dissertação. Visitamos a conjuntura de outro espaço atlântico na mesma época, a Madeira, de modo a conduzirmos uma avaliação comparativa, mantendo o quadro atlântico em perspectiva. Recorremos, por fim, à biografia de um deputado para obtermos uma escala de observação mais próxima da dinâmica política.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O nosso sistema de numeração decimal é um sistema de natureza posicional: os números são representados por sequências de símbolos, sendo que o valor de cada símbolo depende da posição que ocupa nessa sequência. Por exemplo, quando escrevemos o numeral relativo ao número treze, “13”, estamos na realidade a utilizar uma numeração mista: “1” vale uma dezena e “3” vale três unidades. Treze, na sua escrita matemática atual, traduz a organização uma dezena mais três unidades; dez unidades de uma ordem numérica são alvo de uma composição para uma unidade da ordem numérica seguinte, o que traduz a essência de um sistema posicional de base 10. Por isso, o “10” desempenha um papel de extrema importância e a forma como as crianças desenvolvem as primeiras explorações do nosso sistema de numeração é determinante para as suas aprendizagens futuras. (...) Para estimular uma verdadeira compreensão da ordem das dezenas, as atividades típicas são: (a) Separa 10 e diz o número; (b) Pinta 10 e diz o número; (c) Utilização de dispositivos com algarismos móveis (presentes em todos os manuais do bem sucedido método de Singapura). Vejamos como podemos promover a compreensão da ordem das dezenas e ultrapassar com eficácia a “barreira” do 10. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A colecção Vamos Sentir com o Necas é um projecto que «trabalha» as emoções nas crianças como forma de favorecer a auto-estima, fomentar a sã convivência e facilitar o sucesso escolar. Em cada livro, o leitor, seja a criança ou o educador, pai/mãe ou professor, irá encontrar uma história atractiva, em que os protagonistas são um grupo de crianças e o seu amigo especial, o golfinho Necas. O golfinho Necas faz a identificação das emoções e ensina aos amigos, numa linguagem simples e directa, a função que estas têm na nossa sobrevivência e a forma de as utilizar na promoção do bem-estar. Deste modo, o Necas ajuda-os a compreenderem o turbilhão interior que os move e como podem usar essa energia de forma positiva e saudável. Dotar os mais novos dos requisitos necessários à compreensão de si mesmos, e de si na relação com os outros, é um primeiro passo que contribuirá para um crescimento mais equilibrado.