792 resultados para goat fibre
Resumo:
The development of high performance ceramics and ceramic composites often relies on assumptions about their behaviour during loading and at failure. A crucial influence on the mechanical properties of these materials is the degree of sub-critical cracking, which post mortem investigations cannot adequately reveal. Hence a clear picture of the dynamic micromechanisms of cracking is required if applications of fracture and damage mechanics to theoretical models is to be meaningful.
Resumo:
A complete optical system model has been developed and used to assess chirped fibre Bragg grating dispersion compensators. Gratings suitable for dispersion compensation in both laser based and modulator based optical communications systems have been modelled. A grating 10 cm in length has been shown to permit virtually dispersion free transmission over 425 km, when used in an externally modulated system. Long haul dispersion compensation using several 2 cm gratings spaced at intervals along the fibre is also modelled, illustrating viable 10Gbit/s transmission over a distance in excess of 168 km.
Resumo:
Reliability of the measuring devices is very important problem. Optical fibre sensors are very efficient. The use of optical fibre sensors for monitoring the physical and chemical parameters has been expanding over resent years. These sensors are applied for monitoring the structural integrity of long, parallel lay synthetic ropes. Such ropes are corrosion free, however, their operational lifetime under cyclic load is not well understood and premature failure can occur due to slippage and breakage of yarns within the rope. The monitoring system has been proposed which is based on acoustic detection of yarn breakage. Monitoring the strain and temperature is performed using the array of fibre gratings distributed along the rope length.
Resumo:
A GaAs Vertical Cavity Surface Emitting Laser (VCSEL) that generates controlled modes offset from the center is described. The device is modulated with a 27-1 pseudo-random bit sequence and its output is transmitted along a 1 km length of multimode fiber (MMF). Open eyes are obtained for data rates as high as 1.4Gb/s. The transmission bandwidth increases by a factor of 4 over over-filled launch (OFL). This enhancement is stable against environment influences on the fiber.
Resumo:
Etched VCSEL sources are reported which avoid bandwidth collapse in multimode fibre using a simple coupling technique to control the launch. These devices have allowed better than over-filled launch bandwidth for alignment tolerances of ±7 microns.
Resumo:
A Fabry-Perot laser source operating at 1300 nm was modulated at 2.5 Gb/s with a 27-1 pseudo-random bit sequence. Three techniques were examined for increasing the bandwidth of optical links using multimode fiber (MMF). With an offset launch of 14 μm, the eye remained open after the 2 km link of 50 μm core MMF containing seven connectors and three splices. An approximate four-fold bandwidth improvement was obtained using the offset launch with a bandwidth-length product of 7.5 Gb/s.km and a bit error rate below 10-10. The bandwidth enhancement was stable against environmental influences on the fiber link, such as mechanical agitation. Detailed simulations demonstrated that the technique allows enhanced operating bandwidths in over 99% of existing link.
Resumo:
A method was developed for the estimation of the erosive wear of fiber-insulating materials. The wear increases with increasing impact velocity of the particles, increasing impact angle, particle size and the thermal ageing of the fibre elements. Through CFD simulation of the particle-containing gas flow, the erosion depth can be predicted.
Resumo:
This paper describes the use of fibre optic sensing with Brillouin Optical Time-Domain Reflectometry (BOTDR) for near-continuous (distributed) strain monitoring of a large diameter pipeline, buried in predominantly granular material, subjected to a pipe jack tunnelling operation in London Clay. The pipeline, buried at shallow depth, comprises 4.6 m long sections connected with standard bell and spigot type joints, which connect to a continuous steel pipeline. In this paper the suitability of fibre optic sensing with BOTDR for monitoring pipeline behaviour is illustrated. The ability of the fibre optic sensor to detect local strain changes at joints and the subsequent impact on the overall strain profile is shown. The BOTDR strain profile was also used to infer pipe settlement through a process of double-integration and was compared to pipe settlement measurements. The close approximation of the measured pipe settlement provides further confidence in fibre optic strain sensing with BOTDR to investigate the intricacies of pipeline behaviour, pipe-soil interaction and interaction between pipe sections when subjected to ground movement. Copyright ASCE 2006.
Resumo:
Operating limits of a chirped fibre grating dispersion compensator are determined using a complete optical system model. A 10cm compensator extends the transmission range of an optimised 10Gbit/s MQW electroabsorption modulator from 80km to 425km.
Resumo:
The laser is a major source of nonlinearity for optical fibre communication systems. In this paper, we propose a CMOS analogue predistortion circuit to reduce laser nonlinearity for wideband optical fibre links. The circuit uses a nonlinearity having the inverse transfer characteristic of the directly modulated vertical cavity surface emitting laser (VCSEL). It is shown by post-layout simulation that the predistortion circuit shows 12dBm improvement in the optical fibre system. The optical fibre transmitter front-end with predistortion lineariser is being fabricated using the austriamicrosystems (AMS) 0.3 5μm CMOS technology.
Resumo:
Although a wide range of techniques exist for slope monitoring, the task of monitoring slopes is sometimes complicated by the extensive nature and unpredictability of slope movements. The Brillouin optical time-domain reflectometer (BOTDR) is a distributed optical fiber strain measurement technology utilising Brillouin scattering. This method measures continuous strain along a standard optical fibre over a distance up to 10 km and hence has potential to detect deformations and diagnose problems along large sections of slopes and embankments. This paper reports the demonstration of BOTDR method for monitoring surface ground movements of clay cuttings and embankments along London's ring M25 motorway. A field trial investigating varying methods of onsite fibre optic installations was conducted. The surrounding ground was artificially moved by excavating a 3 m deep trench perpendicular to the instrumented sections. Results obtained from onsite installations after slope movement demonstrate a half-pipe covered fibre optic installed on wide (200mm) Tensar ™SS20 geogrid gives the most consistent recorded strain change profile. Initial conclusions suggest this method best represents induced ground motion at the surface and hence is recommended for implementation in future sitework. Copyright ASCE 2008.
Resumo:
FiSAT program was used to estimate population parameters of Upenaeus sulphureus from length frequency data. Loc and K were found to be 22.7 em and 0.98 year1 respectively. The Wetherall plot provided an estimate of L= and Z/K were 21.585 em and 4.759 respectively. The annual rate of natural and fishing mortality were estimated as 1.91 and 3.86 respectively. The exploitation rate was 0.668. The selection pattern Lc was 10.824 em. Recruitment pattern suggest of two uneven seasonal pulses in March-April and August-October. Peaks appeared in August-October. Maximum yield could be achieved simultaneously increasing length at first capture to 10.0 em. The length weight relationship was found to be W =0.03065 Lz.8328. Highest yield and price could be achieved by decreasing the fishing mortality to 0.9 coefficient rate.
Resumo:
This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.