819 resultados para giunto,intelligenza artificiale,machine learning,manutenzione predittiva


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi due anni, per via della pandemia generata dal virus Covid19, la vita in ogni angolo del nostro pianeta è drasticamente cambiata. Ad oggi, nel mondo, sono oltre duecentoventi milioni le persone che hanno contratto questo virus e sono quasi cinque milioni le persone decedute. In alcuni periodi si è arrivati ad avere anche un milione di nuovi contagiati al giorno e mediamente, negli ultimi sei mesi, questo dato è stato di più di mezzo milione al giorno. Gli ospedali, soprattutto nei paesi meno sviluppati, hanno subito un grande stress e molte volte hanno avuto una carenza di risorse per fronteggiare questa grave pandemia. Per questo motivo ogni ricerca in questo campo diventa estremamente importante, soprattutto quelle che, con l'ausilio dell'intelligenza artificiale, riescono a dare supporto ai medici. Queste tecnologie una volta sviluppate e approvate possono essere diffuse a costi molto bassi e accessibili a tutti. In questo elaborato sono stati sperimentati e valutati due diversi approcci alla diagnosi del Covid-19 a partire dalle radiografie toraciche dei pazienti: il primo metodo si basa sul transfer learning di una rete convoluzionale inizialmente pensata per la classificazione di immagini. Il secondo approccio utilizza i Vision Transformer (ViT), un'architettura ampiamente diffusa nel campo del Natural Language Processing adattata ai task di Visione Artificiale. La prima soluzione ha ottenuto un’accuratezza di 0.85 mentre la seconda di 0.92, questi risultati, soprattutto il secondo, sono molto incoraggianti soprattutto vista la minima quantità di dati di training necessaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors is essential in performing localization. This makes the time of arrival (ToA) an important piece of information to retrieve from the AE signal. Generally, this is determined using statistical methods such as the Akaike Information Criterion (AIC) which is particularly prone to errors in the presence of noise. And given that the structures of interest are surrounded with harsh environments, a way to accurately estimate the arrival time in such noisy scenarios is of particular interest. In this work, two new methods are presented to estimate the arrival times of AE signals which are based on Machine Learning. Inspired by great results in the field, two models are presented which are Deep Learning models - a subset of machine learning. They are based on Convolutional Neural Network (CNN) and Capsule Neural Network (CapsNet). The primary advantage of such models is that they do not require the user to pre-define selected features but only require raw data to be given and the models establish non-linear relationships between the inputs and outputs. The performance of the models is evaluated using AE signals generated by a custom ray-tracing algorithm by propagating them on an aluminium plate and compared to AIC. It was found that the relative error in estimation on the test set was < 5% for the models compared to around 45% of AIC. The testing process was further continued by preparing an experimental setup and acquiring real AE signals to test on. Similar performances were observed where the two models not only outperform AIC by more than a magnitude in their average errors but also they were shown to be a lot more robust as compared to AIC which fails in the presence of noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo elaborato di tesi si affronta uno studio inerente alla Manutenzione su Condizione (CBM), applicata ad una macchina automatica adibita alla produzione di capsule in plastica, in collaborazione con il gruppo SACMI S.C. di Imola. Nel Capitolo 1 viene fornita una introduzione sul tema della manutenzione e sulla sua evoluzione dalla prima rivoluzione industriale ad oggi. Nel Capitolo 2 vengono descritti i principi teorici della manutenzione predittiva e se ne analizza lo stato dell’arte. Nel Capitolo 3 viene fornita una introduzione sull’azienda SACMI S.C. e in seguito vengono descritte nel dettaglio le macchine sulle quali si sono concentrate le successive analisi. Nel Capitolo 4 viene approfondito l’estrusore, uno dei componenti principali delle macchine analizzate. Nel Capitolo 5 viene presentato un esempio di valutazione dell’efficienza di alcune macchine collegate in serie attraverso il calcolo di un indicatore chiamato Overall Equipment Effectiveness (OEE). Il Capitolo 6 rappresenta il cuore della tesi e contiene tutte le analisi di CBM effettuate durante il periodo di tirocinio. Vengono analizzati i principali gruppi funzionali della macchina a partire da quelli più critici per tempi o costi di manutenzione. Le analisi sono state condotte ricercando all’interno di tutto il parco macchine quelle che presentavano delle condizioni di funzionamento sospette. Nel Capitolo 7 vengono presentate alcune analisi relative ai tempi di fermo macchina dovuti alle manutenzioni preventive e ai costi dei ricambi previsti dal manuale di manutenzione. Queste analisi vengono poi declinate su un caso reale nel quale si calcola il costo dei ricambi negli ultimi cinque anni distinguendo tra costi dovuti ad azioni preventive o correttive. Nel Capitolo 8 vengono presentate le conclusioni, mentre nel Capitolo 9 sono presentati gli sviluppi futuri di questo lavoro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collecting and analysing data is an important element in any field of human activity and research. Even in sports, collecting and analyzing statistical data is attracting a growing interest. Some exemplar use cases are: improvement of technical/tactical aspects for team coaches, definition of game strategies based on the opposite team play or evaluation of the performance of players. Other advantages are related to taking more precise and impartial judgment in referee decisions: a wrong decision can change the outcomes of important matches. Finally, it can be useful to provide better representations and graphic effects that make the game more engaging for the audience during the match. Nowadays it is possible to delegate this type of task to automatic software systems that can use cameras or even hardware sensors to collect images or data and process them. One of the most efficient methods to collect data is to process the video images of the sporting event through mixed techniques concerning machine learning applied to computer vision. As in other domains in which computer vision can be applied, the main tasks in sports are related to object detection, player tracking, and to the pose estimation of athletes. The goal of the present thesis is to apply different models of CNNs to analyze volleyball matches. Starting from video frames of a volleyball match, we reproduce a bird's eye view of the playing court where all the players are projected, reporting also for each player the type of action she/he is performing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente elaborato ha studiato i sistemi di assistenza avanzata al conducente (ADAS), focalizzandosi sull’Adaptive Cruise Control (ACC). Si sono studiati diversi aspetti comportamentali dei conducenti in funzione del sistema ACC come il visual behaviour dei conducenti, i dati cinematici del veicolo (driving behaviour) e il tempo di percezione-reazione in situazioni critiche. Si è descritta la sperimentazione svolta in sito e le strumentazioni innovative, tra le quali il Mobile eye tracker, utilizzate per la raccolta dati. Per eseguire l’elaborazione dei dati sono state applicate tecniche di machine learning, mediante l’applicazione di una rete neurale artificiale realizzata appositamente per questo studio, risultando uno dei primi nel settore ad utilizzare tale metodologia. Si è descritto il codice della rete e valutate le prestazioni della stessa. Infine sono state eseguite analisi sul comportamento dei conducenti in funzione dello stato (on/off) del sistema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'image captioning è un task di machine learning che consiste nella generazione di una didascalia, o caption, che descriva le caratteristiche di un'immagine data in input. Questo può essere applicato, ad esempio, per descrivere in dettaglio i prodotti in vendita su un sito di e-commerce, migliorando l'accessibilità del sito web e permettendo un acquisto più consapevole ai clienti con difficoltà visive. La generazione di descrizioni accurate per gli articoli di moda online è importante non solo per migliorare le esperienze di acquisto dei clienti, ma anche per aumentare le vendite online. Oltre alla necessità di presentare correttamente gli attributi degli articoli, infatti, descrivere i propri prodotti con il giusto linguaggio può contribuire a catturare l'attenzione dei clienti. In questa tesi, ci poniamo l'obiettivo di sviluppare un sistema in grado di generare una caption che descriva in modo dettagliato l'immagine di un prodotto dell'industria della moda dato in input, sia esso un capo di vestiario o un qualche tipo di accessorio. A questo proposito, negli ultimi anni molti studi hanno proposto soluzioni basate su reti convoluzionali e LSTM. In questo progetto proponiamo invece un'architettura encoder-decoder, che utilizza il modello Vision Transformer per la codifica delle immagini e GPT-2 per la generazione dei testi. Studiamo inoltre come tecniche di deep metric learning applicate in end-to-end durante l'addestramento influenzino le metriche e la qualità delle caption generate dal nostro modello.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforcement Learning is an increasingly popular area of Artificial Intelligence. The applications of this learning paradigm are many, but its application in mobile computing is in its infancy. This study aims to provide an overview of current Reinforcement Learning applications on mobile devices, as well as to introduce a new framework for iOS devices: Swift-RL Lib. This new Swift package allows developers to easily support and integrate two of the most common RL algorithms, Q-Learning and Deep Q-Network, in a fully customizable environment. All processes are performed on the device, without any need for remote computation. The framework was tested in different settings and evaluated through several use cases. Through an in-depth performance analysis, we show that the platform provides effective and efficient support for Reinforcement Learning for mobile applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea behind the project is to develop a methodology for analyzing and developing techniques for the diagnosis and the prediction of the state of charge and health of lithium-ion batteries for automotive applications. For lithium-ion batteries, residual functionality is measured in terms of state of health; however, this value cannot be directly associated with a measurable value, so it must be estimated. The development of the algorithms is based on the identification of the causes of battery degradation, in order to model and predict the trend. Therefore, models have been developed that are able to predict the electrical, thermal and aging behavior. In addition to the model, it was necessary to develop algorithms capable of monitoring the state of the battery, online and offline. This was possible with the use of algorithms based on Kalman filters, which allow the estimation of the system status in real time. Through machine learning algorithms, which allow offline analysis of battery deterioration using a statistical approach, it is possible to analyze information from the entire fleet of vehicles. Both systems work in synergy in order to achieve the best performance. Validation was performed with laboratory tests on different batteries and under different conditions. The development of the model allowed to reduce the time of the experimental tests. Some specific phenomena were tested in the laboratory, and the other cases were artificially generated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most visionary goals of Artificial Intelligence is to create a system able to mimic and eventually surpass the intelligence observed in biological systems including, ambitiously, the one observed in humans. The main distinctive strength of humans is their ability to build a deep understanding of the world by learning continuously and drawing from their experiences. This ability, which is found in various degrees in all intelligent biological beings, allows them to adapt and properly react to changes by incrementally expanding and refining their knowledge. Arguably, achieving this ability is one of the main goals of Artificial Intelligence and a cornerstone towards the creation of intelligent artificial agents. Modern Deep Learning approaches allowed researchers and industries to achieve great advancements towards the resolution of many long-standing problems in areas like Computer Vision and Natural Language Processing. However, while this current age of renewed interest in AI allowed for the creation of extremely useful applications, a concerningly limited effort is being directed towards the design of systems able to learn continuously. The biggest problem that hinders an AI system from learning incrementally is the catastrophic forgetting phenomenon. This phenomenon, which was discovered in the 90s, naturally occurs in Deep Learning architectures where classic learning paradigms are applied when learning incrementally from a stream of experiences. This dissertation revolves around the Continual Learning field, a sub-field of Machine Learning research that has recently made a comeback following the renewed interest in Deep Learning approaches. This work will focus on a comprehensive view of continual learning by considering algorithmic, benchmarking, and applicative aspects of this field. This dissertation will also touch on community aspects such as the design and creation of research tools aimed at supporting Continual Learning research, and the theoretical and practical aspects concerning public competitions in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Neural Networks (DNNs) have revolutionized a wide range of applications beyond traditional machine learning and artificial intelligence fields, e.g., computer vision, healthcare, natural language processing and others. At the same time, edge devices have become central in our society, generating an unprecedented amount of data which could be used to train data-hungry models such as DNNs. However, the potentially sensitive or confidential nature of gathered data poses privacy concerns when storing and processing them in centralized locations. To this purpose, decentralized learning decouples model training from the need of directly accessing raw data, by alternating on-device training and periodic communications. The ability of distilling knowledge from decentralized data, however, comes at the cost of facing more challenging learning settings, such as coping with heterogeneous hardware and network connectivity, statistical diversity of data, and ensuring verifiable privacy guarantees. This Thesis proposes an extensive overview of decentralized learning literature, including a novel taxonomy and a detailed description of the most relevant system-level contributions in the related literature for privacy, communication efficiency, data and system heterogeneity, and poisoning defense. Next, this Thesis presents the design of an original solution to tackle communication efficiency and system heterogeneity, and empirically evaluates it on federated settings. For communication efficiency, an original method, specifically designed for Convolutional Neural Networks, is also described and evaluated against the state-of-the-art. Furthermore, this Thesis provides an in-depth review of recently proposed methods to tackle the performance degradation introduced by data heterogeneity, followed by empirical evaluations on challenging data distributions, highlighting strengths and possible weaknesses of the considered solutions. Finally, this Thesis presents a novel perspective on the usage of Knowledge Distillation as a mean for optimizing decentralized learning systems in settings characterized by data heterogeneity or system heterogeneity. Our vision on relevant future research directions close the manuscript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine Learning makes computers capable of performing tasks typically requiring human intelligence. A domain where it is having a considerable impact is the life sciences, allowing to devise new biological analysis protocols, develop patients’ treatments efficiently and faster, and reduce healthcare costs. This Thesis work presents new Machine Learning methods and pipelines for the life sciences focusing on the unsupervised field. At a methodological level, two methods are presented. The first is an “Ab Initio Local Principal Path” and it is a revised and improved version of a pre-existing algorithm in the manifold learning realm. The second contribution is an improvement over the Import Vector Domain Description (one-class learning) through the Kullback-Leibler divergence. It hybridizes kernel methods to Deep Learning obtaining a scalable solution, an improved probabilistic model, and state-of-the-art performances. Both methods are tested through several experiments, with a central focus on their relevance in life sciences. Results show that they improve the performances achieved by their previous versions. At the applicative level, two pipelines are presented. The first one is for the analysis of RNA-Seq datasets, both transcriptomic and single-cell data, and is aimed at identifying genes that may be involved in biological processes (e.g., the transition of tissues from normal to cancer). In this project, an R package is released on CRAN to make the pipeline accessible to the bioinformatic Community through high-level APIs. The second pipeline is in the drug discovery domain and is useful for identifying druggable pockets, namely regions of a protein with a high probability of accepting a small molecule (a drug). Both these pipelines achieve remarkable results. Lastly, a detour application is developed to identify the strengths/limitations of the “Principal Path” algorithm by analyzing Convolutional Neural Networks induced vector spaces. This application is conducted in the music and visual arts domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonostante lo scetticismo di molti studiosi circa la possibilità di prevedere l'andamento della borsa valori, esistono svariate teorie ipotizzanti la possibilità di utilizzare le informazioni conosciute per predirne i movimenti futuri. L’avvento dell’intelligenza artificiale nella seconda parte dello scorso secolo ha permesso di ottenere risultati rivoluzionari in svariati ambiti, tanto che oggi tale disciplina trova ampio impiego nella nostra vita quotidiana in molteplici forme. In particolare, grazie al machine learning, è stato possibile sviluppare sistemi intelligenti che apprendono grazie ai dati, riuscendo a modellare problemi complessi. Visto il successo di questi sistemi, essi sono stati applicati anche all’arduo compito di predire la borsa valori, dapprima utilizzando i dati storici finanziari della borsa come fonte di conoscenza, e poi, con la messa a punto di tecniche di elaborazione del linguaggio naturale umano (NLP), anche utilizzando dati in linguaggio naturale, come il testo di notizie finanziarie o l’opinione degli investitori. Questo elaborato ha l’obiettivo di fornire una panoramica sull’utilizzo delle tecniche di machine learning nel campo della predizione del mercato azionario, partendo dalle tecniche più elementari per arrivare ai complessi modelli neurali che oggi rappresentano lo stato dell’arte. Vengono inoltre formalizzati il funzionamento e le tecniche che si utilizzano per addestrare e valutare i modelli di machine learning, per poi effettuare un esperimento in cui a partire da dati finanziari e soprattutto testuali si tenterà di predire correttamente la variazione del valore dell’indice di borsa S&P 500 utilizzando un language model basato su una rete neurale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trying to explain to a robot what to do is a difficult undertaking, and only specific types of people have been able to do so far, such as programmers or operators who have learned how to use controllers to communicate with a robot. My internship's goal was to create and develop a framework that would make that easier. The system uses deep learning techniques to recognize a set of hand gestures, both static and dynamic. Then, based on the gesture, it sends a command to a robot. To be as generic as feasible, the communication is implemented using Robot Operating System (ROS). Furthermore, users can add new recognizable gestures and link them to new robot actions; a finite state automaton enforces the users' input verification and correct action sequence. Finally, the users can create and utilize a macro to describe a sequence of actions performable by a robot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al giorno d’oggi viviamo in una realtà dove lo sviluppo economico, l’innovazione tecnologica, la qualità della vita e l’impatto ambientale sono i protagonisti assoluti. Tutti, persino gli Stati del mondo, si trovano a fare i conti con varie problematiche riguardanti i quattro aspetti sopracitati e qui possiamo dire che la sostenibilità ne è il punto chiave e che al momento non sembra esistere ancora una metrica riconosciuta e approvata per consigliare, a chi di interesse, come modificare certi aspetti per crescere in modo sostenibile. Le Nazioni Unite hanno deciso, di comune accordo, di stilare una lista di obiettivi da raggiungere entro il 2030 dove è possibile trovare argomenti in linea con quanto descritto finora. Questa raccolta è principalmente divisa in aspetti economici, sociali e ambientali che sono le stesse categorie di dati impiegate per il calcolo del Sustainable Development Index. In questo elaborato ci si propone di progettare e sviluppare una rete neurale predittiva da affiancare a un sistema di feedback per realizzare un prodotto che sia abile di: descrivere il contesto di partenza tramite l’SDI e/o consigliare comportamenti per migliorare la situazione in modo sostenibile.