987 resultados para germination temperatures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seeds of carrot, groundnut, lettuce, oilseed rape and onion were stored hermetically in laminated aluminium foil packets in four environments (dry or ultra-dry moisture contents combined factorially with temperatures of 20 degrees C or -20 degrees C), replicated at several sites. After ten years' hermetic storage, seed moisture content, equilibrium relative humidity, viability (assessed by ability to germinate normally in standard germination tests) and vigour were determined. After a decade, the change in seed moisture content of samples stored at -20 degrees C was small or nil. Except for groundnut and lettuce (where loss in viability was about 8 and 3%, respectively), no loss in viability was detected after 10 years' hermetic storage at -20 degrees C. In all cases, there was no difference in seed survival between moisture contents at this temperature (P > 0.25). Comparison of seed vigour (root length and rate of germination) also confirmed that drying to moisture contents in equilibrium with 10-12% r.h. had no detrimental effect to longevity when stored at -20 degrees C: the only significant (P < 0.05) differences detected were slightly greater root lengths for ultra-dry storage of four of the six seed lots. Seed moisture content had increased after a decade at 20 degrees C (generally to the level in equilibrium with ambient relative humidity). Hence, sub-zero temperature storage helped maintain the long-term integrity of the laminated aluminium foil packets, as well as that of the seeds within.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seeds of Sterculia foetida were tested for germination following desiccation and subsequent hermetic storage. Whereas seeds at 10.3% moisture content were intact and provided 98% germination, further desiccation reduced germination substantially. The majority of seed coats had cracked after desiccation to 5.1% moisture content. Ability to germinate was not reduced after 12 months' hermetic storage at 10.3% and 7.3% moisture content at 15 degrees C or -18 degrees C, but was reduced considerably at 5.1%. Fungal infection was detected consistently for cracked seeds in germination tests and they did not germinate. However, almost all embryos extracted from cracked seeds germinated if first disinfected with sodium hypochlorite (1%, 5 minutes). In addition. 80 -100% of disinfected extracted embryos from cracked seeds stored hermetically for 28 d at -18 degrees C or -82 degrees C with 3.3% to 6.0% moisture content, and excised embryos stored in this way, were able to germinate. Hence. failure of the very dry seeds of Sterculia foetida to germinate was not due to embryo death from desiccation but to cracking increasing susceptibility to fungal infection upon rehydration. Cracking was associated negatively and strongly with relative humidity and appears to be a mechanical consequence of substantial differences between the isotherms of whole seeds compared with cotyledons and axes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root-knot nematode [RKN] (Meloidogyne incognita) can increase the severity of Verticillium (V dahliae) and Fusarium (F oxysporum f.sp. vasinfectum) wilt diseases in cotton (Gossypium hirsutum). This study was conducted to determine some of the physiological responses caused by nematode invasion that might decrease resistance to vascular wilt diseases. The effect of RKN was investigated on spore germination and protein, carbohydrate and peroxidase content in the xylem fluids extracted from nematode-infected plants. Two cotton cultivars were used with different levels of resistance to both of the wilt pathogens. Spore germination was greater in the xylem fluids from nematode-infected plants than from nematode-free plants. The effect on spore germination was greater in the Fusarium-resistant cultivar (51%). Analysis of these fluids showed a decrease in total protein and carbohydrate levels for both wilt-resistant cultivars, and an increase in peroxidase concentration. Fluids from nematode-free plants of the Verticillium-resistant cultivar contained 46% more peroxidase than the Fusarium-resistant cultivar. The results provide further evidence that the effect of RKN on vascular wilt resistance is systemic and not only local. Changes in metabolites in the xylem pass from the root to the stem, accelerating disease development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass maturity (end of the seed-filling phase) occurred at about 72 days after flowering (DAF) in developing seeds of Mimusops elengi, at which time seed moisture content had declined to about 55%. The onset of ability to germinate was detected at 56 DAF and seeds showed 98% germination by 84 DAF. Tolerance of desiccation to 10% moisture content was first detected at 70 DAF and was maximal by 84 DAF. Delaying collection by a further 14 days to 98 DAF, when fruits began to be shed, reduced seed viability, particularly for seeds first dried to 10% moisture content. Hence the best time for seed collection appears to be about 14 days before fruits shed. In a separate investigation with six different seed lots, desiccation below about 8-12% moisture content reduced viability (considerably in some lots). The viability of dry seeds (below about 10% moisture content) stored hermetically was reduced at cool temperatures (5 degrees C and below), and none survived storage at sub-zero temperatures. The results suggest that Mimusops elengi shows intermediate seed storage behaviour and that the optimal hermetic seed storage environment is about 10% moisture content at 10 degrees C, while short-term, moist, aerated storage at high (40%) moisture content is also feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed of 15 species of Brassicaceae were stored hermetically in a genebank (at -5 degrees C to -10 degrees C with c. 3% moisture content) for 40 years. Samples were withdrawn at intervals for germination tests. Many accessions showed an increase in ability to germinate over this period. due to loss in dormancy. Nevertheless, some dormancy remained after 40 years' storage and was broken by pre-applied gibberellic acid. The poorest seed survival occurred in Hormatophylla spinosa. Even in this accession the ability to germinate declined by only 7% between 1966 and 2006. Comparison of seeds from 1966 stored for 40 years with those collected anew in 2006 from the original sampling sites, where possible, showed few differences, other than a tendency (7 of 9 accessions) for the latter to show greater dormancy. These results for hermetic storage at sub-zero temperatures and low moisture contents confirm that long-term seed storage can provide a successful technology for ex situ plant biodiversity conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about -2.5degreesC to +2.5degreesC from outside temperatures) maintained at either 374 or 532 mumol mol(-1) CO2. Plant leaf area was determined non-destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light-saturated rates of leaf photosynthesis (A(sat)) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C-i/C-a ratio) was 7.4% less for plants grown at elevated compared with normal CO2. A(sat) in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C-i Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field-grown crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about -2.5 degrees C to +2.5 degrees C from outside temperatures) maintained at either 374 or 532 mumol mol (-1) CO2. Plant leaf area was determined non-destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light-saturated rates of leaf photosynthesis (A(sat)) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C-i/C-a ratio) was 7.4% less for plants grown at elevated compared with normal CO2. A(sat) in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C-i Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field-grown crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To find the range of pressure required for effective high-pressure inactivation of bacterial spores and to investigate the role of alpha/beta-type small, acid-soluble proteins (SASP) in spores under pressure treatment, mild heat was combined with pressure (room temperature to 65 degrees C and 100 to 500 MPa) and applied to wild-type and SASP-alpha(-/)beta(-) Bacillus subtilis spores. On the one hand, more than 4 log units of wild-type spores were reduced after pressurization at 100 to 500 MPa and 65 degrees C, On the other hand, the number of surviving mutant spores decreased by 2 log units at 100 MPa and by more than 5 log units at 500 MPa. At 500 MPa and 65 degrees C, both wild-type and mutant spore survivor counts were reduced by 5 log units. Interestingly, pressures of 100, 200, and 300 MPa at 65 degrees C inactivated wild-type SASP-alpha(+)/beta(+) spores more than mutant SASP-alpha(-)/beta(-) spores, and this was attributed to less pressure-induced germination in SASP-alpha(-)/beta(-) spores than in wild-type SASP-alpha(+)/beta(+) spores. However, there was no difference in the pressure resistance between SASP-alpha(+)/beta(+) and SASP-alpha(-)/beta(-) spores at 100 MPa and ambient temperature (approximately 22 degrees C) for 30 min. A combination of high pressure and high temperature is very effective for inducing spore germination, and then inactivation of the germinated spore occurs because of the heat treatment. This study showed that alpha/beta-type SASP play a role in spore inactivation by increasing spore germination under 100 to 300 MPa at high temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When Campylobacter jejuni cultures that had been grown in broth at 39degreesC were subcultured into fresh medium at 30degreesC, there was a transient period of growth followed by a decline in viable-cell numbers before growth resumed once more. We propose that this complex behavior is the net effect of the growth of inoculum cells followed by a loss of viability due to oxidative stress and the subsequent emergence of a spontaneously arising mutant population that takes over the culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures of 25-60degreesC. Strain hardening and failure strain of cell walls both decreased with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties at higher temperatures (60degreesC), while the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50degreesC) and had lower strain hardening. Strain hardening measured at 50degreesC gave good correlations with baking volume, with the best correlations achieved between rheological measurements and baking tests that used similar mixing conditions. As predicted by the considered failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to strain hardening properties, and that extensional rheological measurements can be used as indicators of baking quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature results from multi-decadal simulations of coupled chemistry climate models for the recent past are analyzed using multi-linear regression including a trend, solar cycle, lower stratospheric tropical wind, and volcanic aerosol terms. The climatology of the models for recent years is in good agreement with observations for the troposphere but the model results diverge from each other and from observations in the stratosphere. Overall, the models agree better with observations than in previous assessments, primarily because of corrections in the observed temperatures. The annually averaged global and polar temperature trends simulated by the models are generally in agreement with revised satellite observations and radiosonde data over much of their altitude range. In the global average, the model trends underpredict the radiosonde data slightly at the top of the observed range. Over the Antarctic some models underpredict the temperature trend in the lower stratosphere, while others overpredict the trends

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ electrolysis within an optically transparent thin-layer electrochemical (OTTLE) cell was applied at 293-243 K in combination with FTIR spectroscopy to monitor spectral changes in the carbonyl stretching region accompanying oxidation of four tetracarbonyl olefin complexes of tungsten(0), viz., trans-[W(CO)(4)(eta(2)-ethene)(2)], trans-[W(CO)(4)(eta(2)-norbornene)(2)], [W(CO)(4)(eta(4)-cycloocta-1,5-diene)], and [W(CO)(4)(eta(4)-norbornadiene)]. In all cases, the one-electron-oxidized radical cations (17-electron complexes) have been identified by their characteristic nu(CO) patterns. For the bidentate diene ligands, the cis stereochemistry is essentially fixed in both the 18- and 17-electron complexes. The radical cation of the trans-bis(ethene) complex was observed only at 243 K, while at room temperature it isomerized rapidly to the corresponding cis-isomer. The thermal stability of the three studied radical cations in the cis configuration correlates with the relative strength of the W-CO bonds in the positions trans to the olefin ligand, which are more affected by the oxidation than the axial W-CO bonds. For the bulky norbornene ligands, their trans configuration in the bis(norbornene) complex remains preserved after the oxidation in the whole temperature range studied. The limited thermal stability of the radical cations of the trans-bis(alkene) complexes is ascribed to dissociation of the alkene ligands. The spectroelectrochemical results are in very good agreement with data obtained earlier by DFT (B3LYP) calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement is reported at 4 deg K (and blocked transmission below 10-5) of PbTe/ZnS thin-film filters deposited on Ge substrates. The reduced carrier-absorption which is obtained by cooling these PbTe films is found to accord with simple theory. Advantage for various high-performance multilayers by cooling is significant at the longer wavelengths, and has been verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra High Temperature #1, initiated by Rebecca Bibby forms the first in an ongoing project which explores the realms of collaboration, performance, writing and publication as artistic vehicle of production, dispersion and progression. With Bibby's text -that re-fictions the futuristic projections of technosexuality in Metropolis (1927)- at its core was launched, printed, compiled and distributed in a live performance by POLLYFIBRE at Eastside Projects in Birmingham. The limited edition printed publication was designed by An Endless Supply whose Risograph stencil printer was used as an instrument in the performed production of the text. As a crude avatar of Rebecca Bibby’s practice, Aikon-II, a mechanically programmed signature machine automatically signed each copy of the text during the performance. POLLYFIBRE's ‘flat-pack’ costumes were on display throughout the duration of the exhibition. POLLYFIBRE is a performance project created by Christine Ellison.