994 resultados para genetic trend
Resumo:
This project aimed to identify novel genetic risk variants associated with migraine in the Norfolk Island population. Statistical analysis and bioinformatics approaches such as polygenic modeling and gene clustering methods were carried out to explore genotypic and expression data from high-throughput techniques. This project had a particular focus on hormonal genes and other genetic variants and identified a modest effect size on the migraine phenotype.
Resumo:
Both red snow crab (Chionoecetes japonicus Rathbun, 1932) and snow crab (Chionoecetes opilio Fabricius, 1788) are commercially important species in Korea. The geographical ranges of the two species overlap in the East Sea, where both species are fished commercially. Morphological identification of the two species and putative hybrids can be difficult because of their overlapping morphological characteristics. The presence of putative hybrids can affect the total allowable catch (TAC) of C. japonicus and C. opilio, and causes problems managing C. japonicus and C. opilio wild resources. To date, however, no natural hybridization has been reported between C. japonicus and C. opilio, despite their overlapping distributions along the coast of the East Sea. In this study, the internal transcribed spacer (ITS) region of major ribosomal RNA genes from the nuclear genome and the cytochrome oxidase I (CO I) gene from the mitochondrial genome were sequenced to determine whether natural hybridization occurs between the two species. Our results revealed that all putative hybrids identified using morphological traits had two distinct types of ITS sequences corresponding to those of both parental species. Mitochondrial CO I gene sequencing showed that all putative hybrids had sequences identical to C. japonicus. A genotyping assay based on single nucleotide polymorphisms in the ITS1 region and the CO I gene produced the most efficient and accurate identification of all hybrid individuals. Molecular data clearly demonstrate that natural hybridization does occur between C. japonicus and C. opilio, but only with C. japonicus as the maternal parent.
Resumo:
The oily bittering Acheilognathus koreensis is a freshwater species that is endemic to Korea and is experiencing severe declines in natural populations as a result of habitat fragmentation and water pollution. For the conservation and restoration of this species, it is necessary to assess its genetic diversity at the population level. We developed 13 polymorphic microsatellite loci that were used to analyze the genetic diversity of two populations collected from the Kum River and the Tamjin River in Korea. All loci exhibited Mendelian inheritance patterns when examined in controlled crosses. Both populations revealed high levels of variability, with the number of alleles ranging from 3 to 20 and observed and expected heterozygosities ranging from 0.500 to 0.969 and from 0.529 to 0.938, respectively. None of the loci showed significant deviation from Hardy–Weinberg equilibrium, and one pair of loci showed significant linkage disequilibrium after Bonferroni correction. Pairwise F ST and genetic distance estimation showed significant differences between two populations. These results suggest that the microsatellites developed herein can be used to study the genetic diversity, population structure and conservation measure of A. koreensis.
Resumo:
The Korean black scraper, Thamnaconus modestus, is one of the most economically important maricultural fish species in Korea. However, the annual catch of this fish has been continuously declining over the past several decades. In this study, the genetic diversity and relationships among four wild populations and two hatchery stocks of Korean black scraper were assessed based on 16 microsatellite (MS) markers. A total of 319 different alleles were detected over all loci with an average of 19.94 alleles per locus. The hatchery stocks [mean number of alleles (N A) = 12, allelic richness (A R) = 12, expected heterozygosity (He) = 0.834] showed a slight reduction (P > 0.05) in genetic variability in comparison with wild populations (mean N A = 13.86, A R = 12.35, He = 0.844), suggesting a sufficient level of genetic variation in the hatchery populations. Similarly low levels of inbreeding and significant Hardy–Weinberg equilibrium deviations were detected in both wild and hatchery populations. The genetic subdivision among all six populations was low but significant (overall F ST = 0.008, P < 0.01). Pairwise F ST, a phylogenetic tree, and multidimensional scaling analysis suggested the existence of three geographically structured populations based on different sea basin origins, although the isolation-by-distance model was rejected. This result was corroborated by an analysis of molecular variance. This genetic differentiation may result from the co-effects of various factors, such as historical dispersal, local environment and ocean currents. These three geographical groups can be considered as independent management units. Our results show that MS markers may be suitable not only for the genetic monitoring of hatchery stocks but also for revealing the population structure of Korean black scraper populations. These results will provide critical information for breeding programs, the management of cultured stocks and the conservation of this species.
Resumo:
Microsatellite markers are important for gene mapping and for marker-assisted selection. Sixty-five polymorphic microsatellite markers were developed with an enriched partial genomic library from olive flounder Paralichthys olivaceus an important commercial fish species in Korea. The variability of these markers was tested in 30 individuals collected from the East Sea (Korea). The number of alleles for each locus ranged from 2 to 33 (mean, 17.1). Observed and expected heterozygosity as well as polymorphism information content varied from 0.313 to 1.000 (mean, 0.788), from 0.323 to 0.977 (mean, 0.820), and from 0.277 to 0.960 (mean, 0.787), respectively. Nine loci showed significant deviation from the Hardy-Weinberg equilibrium after sequential Bonferroni correction. Analysis with MICROCHECKER suggested the presence of null alleles at five of these loci with estimated null allele frequencies of 0.126-0.285. These new microsatellite markers from genomic libraries will be useful for constructing a P. olivaceus linkage map.
Resumo:
The native Asian oyster, Crassostrea ariakensis is one of the most common and important Crassostrea species that occur naturally along the coast of East Asia. Molecular species diagnosis is a prerequisite for population genetic analysis of wild oyster populations because oyster species cannot be discriminated reliably using external morphological characters alone due to character ambiguity. To date there have been few phylogeographic studies of natural edible oyster populations in East Asia, in particular this is true of the common species in Korea C. ariakensis. We therefore assessed the levels and patterns of molecular genetic variation in East Asian wild populations of C. ariakensis from Korea, Japan, and China using DNA sequence analysis of five concatenated mtDNA regions namely; 16S rRNA, cytochrome oxidase I, cytochrome oxidase II, cytochrome oxidase III, and cytochrome b. Two divergent C. ariakensis clades were identified between southern China and remaining sites from the northern region. In addition, hierarchical AMOVA and pairwise UST analyses showed that genetic diversity was discontinuous among wild populations of C. ariakensis in East Asia. Biogeographical and historical sea level changes are discussed as potential factors that may have influenced the genetic heterogeneity of wild C. ariakensis stocks across this region.
Resumo:
The increase in data center dependent services has made energy optimization of data centers one of the most exigent challenges in today's Information Age. The necessity of green and energy-efficient measures is very high for reducing carbon footprint and exorbitant energy costs. However, inefficient application management of data centers results in high energy consumption and low resource utilization efficiency. Unfortunately, in most cases, deploying an energy-efficient application management solution inevitably degrades the resource utilization efficiency of the data centers. To address this problem, a Penalty-based Genetic Algorithm (GA) is presented in this paper to solve a defined profile-based application assignment problem whilst maintaining a trade-off between the power consumption performance and resource utilization performance. Case studies show that the penalty-based GA is highly scalable and provides 16% to 32% better solutions than a greedy algorithm.
Resumo:
In the past few years, the virtual machine (VM) placement problem has been studied intensively and many algorithms for the VM placement problem have been proposed. However, those proposed VM placement algorithms have not been widely used in today's cloud data centers as they do not consider the migration cost from current VM placement to the new optimal VM placement. As a result, the gain from optimizing VM placement may be less than the loss of the migration cost from current VM placement to the new VM placement. To address this issue, this paper presents a penalty-based genetic algorithm (GA) for the VM placement problem that considers the migration cost in addition to the energy-consumption of the new VM placement and the total inter-VM traffic flow in the new VM placement. The GA has been implemented and evaluated by experiments, and the experimental results show that the GA outperforms two well known algorithms for the VM placement problem.
Resumo:
Genetic introgression of aquaculture stocks in local forms is well documented in many fish species but their evolutionary consequences for the local populations have not been thoroughly explored. Due to its wide geographical range, the existence of many locally adapted forms and the frequent occurrence of introgression of aquaculture stocks in local forms, brown trout represents the ideal system to study the effects of such introgressions. Here, we focus on a group of rivers and streams in Sicily (Italy), and, by using molecular tools, we show that autochthonous populations are probably derived from the Southern Atlantic clade, which is present in the Iberian peninsula and North Africa. Three out of the four studied rivers reveal signs of genetic introgression of domestic stocks. Finally, by using advanced geometric morphometric analyses, we show that genetic introgression produces a higher degree of morphological variability relative to that observed in non-introgressed populations.
Resumo:
Ankylosing spondylitis (AS) is a common inflammatory arthritis predominantly affecting the axial skeleton. Susceptibility to the disease is thought to be oligogenic. To identify the genes involved, we have performed a genomewide scan in 185 families containing 255 affected sibling pairs. Two-point and multipoint nonparametric linkage analysis was performed. Regions were identified showing "suggestive" or stronger linkage with the disease on chromosomes 1p, 2q, 6p, 9q, 10q, 16q, and 19q. The MHC locus was identified as encoding the greatest component of susceptibility, with an overall LOD score of 15.6. The strongest non-MHC linkage lies on chromosome 16q (overall LOD score 4.7). These results strongly support the presence of non-MHC genetic-susceptibility factors in AS and point to their likely locations.
Resumo:
Objectives - It has long been suspected that susceptibility to ankylosing spondylitis (AS) is influenced by genes lying distant to the major histocompatibility complex. This study compares genetic models of AS to assess the most likely mode of inheritance, using recurrence risk ratios in relatives of affected subjects. Methods - Recurrence risk ratios in different degrees of relatives were determined using published data from studies specifically designed to address the question. The methods of Risch were used to determine the expected recurrence risk ratios in different degrees of relatives, assuming equal first degree relative recurrence risk between models. Goodness of fit was determined by χ2 comparison of the expected number of affected subjects with the observed number, given equal numbers of each type of relative studied. Results - The recurrence risks in different degrees of relatives were: monozygotic (MZ) twins 63% (17/27), first degree relatives 8.2% (441/5390), second degree relatives 1.0% (8/834), and third degree relatives 0.7% (7/997). Parent-child recurrence risk (7.9%, 37/466) was not significantly different from the sibling recurrence risk (8.2%, 404/4924), excluding a significant dominance genetic component to susceptibility. Poor fitting models included single gene, genetic heterogeneity, additive, two locus multiplicative, and one locus and residual polygenes (χ2 > 32 (two degrees of freedom), p < 10-6 for all models). The best fitting model studied was a five locus model with multiplicative interaction between loci (χ2 = 1.4 (two degrees of freedom), p = 0.5). Oligogenic multiplicative models were the best fitting over a range of population prevalences and first degree recurrence risk rates. Conclusions - This study suggests that of the genetic models tested, the most likely model operating in AS is an oligogenic model with predominantly multiplicative interaction between loci.
Resumo:
Objectives: Recent association studies by the Australo-Anglo-American Spondyloarthritis Consortium (TASC) in Caucasian European populations from Australia, North America and the UK have identified a number of genes as being associated with ankylosing spondylitis (AS). A candidate gene study in a Han Chinese population was performed based on these findings to identify associated genes in this population. Methods: A case-control study was performed in a Han Chinese population of patients with AS (n=775) and controls (n=1587) from Shanghai and Nanjing. All patients met the modified New York criteria for AS. The cases and controls were genotyped for 115 single nucleotide polymorphisms (SNPs) tagging IL23R, ERAP1, STAT3, JAK2, TNFRSF1A and TRADD, as well as other confirmation SNPs from the TASC study, using the Sequenom iPlex and the ABI OpenArray platforms. Statistical analysis of genotyped SNPs was performed using the Cochran - Armitage test for trend and meta-analysis was performed using METAL. SNPs in AS-associated genes in this study were then imputed using MaCH, and association with AS tested by logistic regression. Results: SNPs in TNFRSF1A (rs4149577, p=8.2×10-4), STAT3 (rs2293152, p=0.0015; rs1053005, p=0.017) and ERAP1 (rs27038, p=0.0091; rs27037, p=0.0092) were significantly associated with AS in Han Chinese. Association was also observed between AS and the intergenic region 2p15 (rs10865331, p=0.023). The lack of association between AS and IL23R in Han Chinese was confirmed (all SNPs p>0.1). Conclusions: The study results demonstrate for the first time that genetic polymorphisms in STAT3, TNFRSF1A and 2p15 are associated with AS in Han Chinese, suggesting common pathogenic mechanisms for the disease in Chinese and Caucasian European populations. Furthermore, previous findings demonstrating that ERAP1, but not IL23R, is associated with AS in Chinese patients were confirmed.
Resumo:
Objective: To replicate and refine the reported association of ankylosing spondylitis (AS) with two nonsynonymous single nucleotide polymorphisms (nsSNPs) on chromosome 16q22.1. Methods: Firstly, 730 independent UK patients with AS were genotyped for rs9939768 and rs6979 and allele frequencies were compared with 2879 previously typed historic disease controls. Secondly, the two data sets were combined in meta-analyses. Finally, 5 tagging SNPs, located between rs9939768 and rs6979, were analysed in 1604 cases and 1020 controls. Results: The association of rs6979 with AS was replicated, p=0.03, OR=1.14 (95% CI 1.01 to 1.28), and a trend for association with rs9939768 detected, p=0.06, OR=1.25 (95% CI 0.99 to 1.57). Meta-analyses revealed association of both SNPs with AS, p=0.0008, OR=1.31 (95% CI 1.12 to 1.54) and p=0.0009, OR=1.15 (95% CI 1.06 to 1.23) for rs9939768 and rs6979, respectively. New associations with rs9033 and rs868213 (p=0.00002, OR=1.23 (95% CI 1.12 to 1.36) and p=0.00002 OR=1.45 (95% CI 1.22 to 1.72), respectively, were identified. Conclusions: The region on chromosome 16 that has been replicated in the present work is interesting as the highly plausible candidate gene, tumour necrosis factor receptor type 1 (TNFR1)-associated death domain (TRADD), is located between rs9033 and rs868213. It will require additional work to identify the primary genetic association(s) with AS.
Resumo:
Hereditary haemochromatosis (HH) is the most common lethal monogenic human disease, affecting roughly 1 in 300 white northern Europeans. Homozygosity for the C282Y polymorphism within the HFE gene causes more than 80% of cases, with compound heterozygosity of the C282Y and H63D polymorphism also increasing susceptibility to disease. The aim of this study was to determine the frequency of the C282Y and H63D polymorphisms in the disease, and to assess the risk of HH in heterozygotes for the C282Y polymorphism. 128 patients were recruited because of either radiographic chondrocalcinosis (at least bicompartmental knee disease or joints other than the knee involved) or CPPD pseudogout. Genotyping of the HFE C282Y and H63D mutations was performed using PCR/SSP and genotypes for the C282Y polymorphism confirmed by PCR/RFLP. Historical white European control data were used for comparison. Two previously undiagnosed C282Y homozygotes (1.6%), and 16 C282Y heterozygotes (12.5%), including four (3.1%) C282Y/ H63D compound heterozygotes were identified. This represents a significant overrepresentation of C282Y homozygotes (relative risk 3.4, p-0.037), but the number of heterozygotes was not significantly increased. At a cost per test of £1 for each subject, screening all patients with chondrocalcinosis using the above ascertainment criteria costs only £64 for each case of haemochromatosis identified, clearly a highly cost effective test given the early mortality associated with untreated haemochromatosis. Routine screening for haemochromatosis in patients with appreciable chondrocatcinosis is recommended.
Resumo:
Objective. To investigate the role of the gene NOD2 in susceptibility to, and clinical manifestations of, ankylosing spondylitis (AS). Methods. A case-control study of NOD2 polymorphisms known to be associated with Crohn's disease (CD) (Pro268 Ser, Arg702 Trp, GlY908 Arg, and Len1007fsinsC) was performed in 229 cases of primary AS with no diagnosed inflammatory bowel disease (IBD), 197 cases of AS associated with IBD (referred to as colitic spondylarthritis; comprising 78 with CD and 119 with ulcerative colitis [UC]), and 229 ethnically matched, healthy controls. Associations between NOD2 polymorphisms and several clinical features of AS, including disease severity assessed by questionnaire and age at spondylarthritis onset, were also investigated. Exclusion linkage mapping of chromosome 16 was performed in a separate group of 185 multicase families with AS. Results. An association was identified between Gly908 Arg and UC spondylarthritis (P = 0.016, odds ratio [OR] 4.6, 95% confidence interval [95% CI] 1.316), and a nonsignificant trend with a similar magnitude was observed in association with CD spondylarthritis (P = 0.08, OR 3.9, 95% CI 0.8-18). The Pro268Ser variant was inversely associated with UC spondylarthritis (P = 0.003, OR 0.55, 95% CI 0.37-0.82), but not with CD spondylarthritis. No association was demonstrated between NOD2 variants and primary AS, or between other variants of NOD2 and either UC or CD spondylarthritis. Carriage of the Pro268 Ser polymorphism was associated with greater disease activity as measured by the Bath Ankylosing Spondylitis Disease Activity Index (P = 0.002). Although patients with CD had a younger age at spondylarthritis onset than did those with UC (22.4 years versus 26.4 years; P = 0.01), no association was noted between the NOD2 variants linked with CD and age at spondylarthritis onset. In primary AS, the presence of a gene with a magnitude of association >2.0 was excluded (exclusion logarithm of odds score less than -2.0), and no association was observed with the microsatellite D16S3136. Conclusion. NOD2 variants do not significantly affect the risk of developing primary AS, but may influence susceptibility to, and clinical manifestations of, colitic spondylarthritis.