978 resultados para gas turbine blade
Resumo:
In this paper, a thermoeconomic analysis method based on the First and the Second Law of Thermodynamics and applied to analyse the replacement of an equipment of a cogeneration system is presented. The cogeneration system consists of a gas turbine linked to a waste boiler. The electrical demand of the campus is approximately 9 MW but the cogen system generates approximately one third of the university requirement as well as 1.764 kg/s of saturated steam (at 0.861 MPa), approximately, from a single fuel source. The energy-economic study showed that the best system, based on pay-back period and based on the maximum savings (in 10 years), was the system that used the gas turbine M1T-06 of Kawasaki Heavy Industries and the system that used the gas turbine CCS7 of Hitachi Zosen, respectively. The exergy-economic study showed that the best system, which has the lowest EMC, was the system that used the gas turbine ASE50 of Allied Signal. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper a hybrid solid oxide fuel cell (SOFC) system is analyzed. This system applies a combined cycle utilizing gas turbine associated to a SOFC for rational decentralized energy production. Initially the relative concepts about the fuel cell are presented, followed by some chemical and technical informations such as the change of Gibbs free energy in isothermal fuel oxidation (or combustion) directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC associated with a gas turbine system is developed, considering the electricity and steam production for a hospital, as regard to the Brazilian conditions. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. In conclusion, it is shown by a Sankey Diagram that the hybrid SOFC system may be an excellent opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a sensible alternative from the technical point of view, demanding special methods of design, equipment selection and mainly of the contractual deals associated to electricity and fuel supply.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Incluye Bibliografía
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The purpose of this work is to study the incorporation of hydrogen production (Case A) and the process of gasification of sugarcane bagasse associated with combined cycle gas turbine and steam turbine (Case B) for Distillery Pioneers process. These technologies can be used to improve the energy supply in the sugarcane mill. Initially the processes for obtaining sugar and ethanol from sugarcane is discussed, with a theoretical introduction to hydrogen, the process of steam reforming and gasification of biomass (bagasse) by inserting a turbine associated with the recovery boiler gas. Subsequently makes up the energy and exergy analysis of the incorporation of the above technologies. In end stage makes it an ecological analysis considering or not the carbon cycle (photosynthesis), to determine the levels of emissions of pollutants, carbon dioxide equivalent, indicators of pollution and ecological efficiencies associated with technological developments proposed. It is concluded that hydrogen production by steam reforming of ethanol and gasification of bagasse are viable alternatives from the point of view of technical and environmental applications in the biofuels industry, contributing to the development of the sector in the country
Resumo:
The gas turbine (GT) is known to have: low cost of capital over the amount of energy, high flexibility, high reliability, short delivery time, commissioning and commercial operation at the beginning and quick departure. The gas turbine is also recognized for its superior environmental performance, manifested in air pollution containment and reducing greenhouse gases (Mahi, 1994). Gas turbines in simple cycle mode (SC) have long been used by utilities to limited power generation peak. In addition, manufacturing facilities use gas turbines for power generation units on site, often in combination with the process of heat production, such as hot water and steam process. In recent years, the performance of industrial gas turbines has been improved due to significant investments in research and development, in terms of fuel to electricity conversion efficiency, plant capacity, availability and reliability. The greater availability of energy resources such as natural gas (NG), the significant reduction of capital costs and the introduction of advanced cycles, have also been a success factor for the increased use of gas turbines to load applications base (Poulikas, 2004). Open Cycle Gas Turbine with a greater degree of heat to the atmosphere may alternatively be used to produce additional electricity using a steam cycle, or to compose a cogeneration process. The combined cycle (CC) uses the heat from the gas turbine exhaust gas to increase the power output and increase the overall efficiency of more than 50% second (Najjar, 2001). The initial discovery of these cycles in the commercial power generation market was possible due to the development of the gas turbine. Only from the 1970s that gas turbine inlet temperature and therefore the exhaust gas temperature was sufficiently high to allow a better efficiency in the combined cycle ... (Complete Abstract click electronic access below)
Resumo:
This work studies the incorporation of new technologies in the sugarcane sector. Are considered the ethanol steam reforming and the gasification of sugarcane bagasse(by-product) processes associated with combined cycle systems (Gas Turbine + Steam Turbine), aggregating hydrogen production and increased electricity supply in the sector, respectively. To verify the technical feasibility of the incorporation processes was performed a thermodynamic analysis, considering data from a typical Brazilian Sugar Cane Industry. In another step the economic viability study of the hydrogen production process was made, with consideration on hydrated and anhydrous ethanol steam reform, comparing the cost of hydrogen production. Also considered studies of economic engineering of the gasification process and the generation of electricity associated. As conclusions, it follows that the ethanol steam reforming is a great alternative for hydrogen production, presenting production cost relatively low, especially when is considered the steam reforming of hydrated ethanol. For the gasification process associated with combined cycle, can be observed an increase of 8.56 times of the electricity production in the sugar cane industry, indicating a positive annual saving when the sales price of the supply electricity is greater than 0.070 US$/kWh. Finally it can be concluded that the incorporation of these new processes allow greater profitability and operational flexibility of Brazilian sugarcane mills
Resumo:
Pós-graduação em Engenharia Mecânica - FEG