967 resultados para forecasting models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sávosan rögzített devizaárfolyamok elméleti és gyakorlati vizsgálatai a nemzetközi közgazdaságtan egyik legnépszerűbb témaköre volt a kilencvenes évek elején. A gyakorlati módszerek közül az alkalmazások és hivatkozások száma tekintetében az úgynevezett eltolódással igazítás módszere emelkedett ki. A módszert alkalmazó szerzők szerint amíg a lebegő árfolyamú devizák előrejelzése céltalan feladatnak tűnik, addig sávos árfolyam esetén az árfolyam sávon belüli helyzetének előrejelzése sikeresen végezhető. E tanulmány bemutatja, hogy az Európai Monetáris Rendszer és az északeurópai államok sávos árfolyamrendszereinél e módszer alkalmazásával adódott eredmények például a lebegő árfolyamú amerikai dollárra és az egységgyökfolyamatok többségére is érvényesek. A tanulmány feltárja e látszólagos ellentmondás okait, és bemutat egy olyan, a sávos árfolyamrendszerek főbb megfigyelt jellemzőire épülő modellt, amelynek keretei között a sávon belüli árfolyam előrejelzése nem feltétlenül lehetséges, mert a leértékelés előtti időszakban a sávon belüli árfolyam alakulása kaotikus lehet. / === / Following the development of the first exchange rate target zone model at the end of the eighties dozens of papers analyzed theoretical and empirical topics of currency bands. This paper reviews different empirical methods to analyze the credibility of the band and lays special emphasis on the most widely used method, the so-called drift-adjustment method. Papers applying that method claim that while forecasting a freely floating currency is hopeless, predicting an exchange rate within the future band is successful. This paper shows that the results achieved by applications to EMS and Nordic currencies are not specific to data of target zone currencies. For example, application to US dollar and even to most unit root processes leads qualitatively to the same. This paper explores the solutions of this puzzle and shows a model of target zones in which the exchange rate within the band is not necessarily predictable since the process might follow chaotic dynamics before devaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of mangrove restoration projects should be to improve community structure and ecosystem function of degraded coastal landscapes. This requires the ability to forecast how mangrove structure and function will respond to prescribed changes in site conditions including hydrology, topography, and geophysical energies. There are global, regional, and local factors that can explain gradients of regulators (e.g., salinity, sulfides), resources (nutrients, light, water), and hydroperiod (frequency, duration of flooding) that collectively account for stressors that result in diverse patterns of mangrove properties across a variety of environmental settings. Simulation models of hydrology, nutrient biogeochemistry, and vegetation dynamics have been developed to forecast patterns in mangroves in the Florida Coastal Everglades. These models provide insight to mangrove response to specific restoration alternatives, testing causal mechanisms of system degradation. We propose that these models can also assist in selecting performance measures for monitoring programs that evaluate project effectiveness. This selection process in turn improves model development and calibration for forecasting mangrove response to restoration alternatives. Hydrologic performance measures include soil regulators, particularly soil salinity, surface topography of mangrove landscape, and hydroperiod, including both the frequency and duration of flooding. Estuarine performance measures should include salinity of the bay, tidal amplitude, and conditions of fresh water discharge (included in the salinity value). The most important performance measures from the mangrove biogeochemistry model should include soil resources (bulk density, total nitrogen, and phosphorus) and soil accretion. Mangrove ecology performance measures should include forest dimension analysis (transects and/or plots), sapling recruitment, leaf area index, and faunal relationships. Estuarine ecology performance measures should include the habitat function of mangroves, which can be evaluated with growth rate of key species, habitat suitability analysis, isotope abundance of indicator species, and bird census. The list of performance measures can be modified according to the model output that is used to define the scientific goals during the restoration planning process that reflect specific goals of the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban growth models have been used for decades to forecast urban development in metropolitan areas. Since the 1990s cellular automata, with simple computational rules and an explicitly spatial architecture, have been heavily utilized in this endeavor. One such cellular-automata-based model, SLEUTH, has been successfully applied around the world to better understand and forecast not only urban growth but also other forms of land-use and land-cover change, but like other models must be fed important information about which particular lands in the modeled area are available for development. Some of these lands are in categories for the purpose of excluding urban growth that are difficult to quantify since their function is dictated by policy. One such category includes voluntary differential assessment programs, whereby farmers agree not to develop their lands in exchange for significant tax breaks. Since they are voluntary, today’s excluded lands may be available for development at some point in the future. Mapping the shifting mosaic of parcels that are enrolled in such programs allows this information to be used in modeling and forecasting. In this study, we added information about California’s Williamson Act into SLEUTH’s excluded layer for Tulare County. Assumptions about the voluntary differential assessments were used to create a sophisticated excluded layer that was fed into SLEUTH’s urban growth forecasting routine. The results demonstrate not only a successful execution of this method but also yielded high goodness-of-fit metrics for both the calibration of enrollment termination as well as the urban growth modeling itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production Planning and Control (PPC) systems have grown and changed because of the developments in planning tools and models as well as the use of computers and information systems in this area. Though so much is available in research journals, practice of PPC is lagging behind and does not use much from published research. The practices of PPC in SMEs lag behind because of many reasons, which need to be explored. This research work deals with the effect of identified variables such as forecasting, planning and control methods adopted, demographics of the key person, standardization practices followed, effect of training, learning and IT usage on firm performance. A model and framework has been developed based on literature. Empirical testing of the model has been done after collecting data using a questionnaire schedule administered among the selected respondents from Small and Medium Enterprises (SMEs) in India. Final data included 382 responses. Hypotheses linking SME performance with the use of forecasting, planning and controlling were formed and tested. Exploratory factor analysis was used for data reduction and for identifying the factor structure. High and low performing firms were classified using a Logistic Regression model. A confirmatory factor analysis was used to study the structural relationship between firm performance and dependent variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation contains four essays that all share a common purpose: developing new methodologies to exploit the potential of high-frequency data for the measurement, modeling and forecasting of financial assets volatility and correlations. The first two chapters provide useful tools for univariate applications while the last two chapters develop multivariate methodologies. In chapter 1, we introduce a new class of univariate volatility models named FloGARCH models. FloGARCH models provide a parsimonious joint model for low frequency returns and realized measures, and are sufficiently flexible to capture long memory as well as asymmetries related to leverage effects. We analyze the performances of the models in a realistic numerical study and on the basis of a data set composed of 65 equities. Using more than 10 years of high-frequency transactions, we document significant statistical gains related to the FloGARCH models in terms of in-sample fit, out-of-sample fit and forecasting accuracy compared to classical and Realized GARCH models. In chapter 2, using 12 years of high-frequency transactions for 55 U.S. stocks, we argue that combining low-frequency exogenous economic indicators with high-frequency financial data improves the ability of conditionally heteroskedastic models to forecast the volatility of returns, their full multi-step ahead conditional distribution and the multi-period Value-at-Risk. Using a refined version of the Realized LGARCH model allowing for time-varying intercept and implemented with realized kernels, we document that nominal corporate profits and term spreads have strong long-run predictive ability and generate accurate risk measures forecasts over long-horizon. The results are based on several loss functions and tests, including the Model Confidence Set. Chapter 3 is a joint work with David Veredas. We study the class of disentangled realized estimators for the integrated covariance matrix of Brownian semimartingales with finite activity jumps. These estimators separate correlations and volatilities. We analyze different combinations of quantile- and median-based realized volatilities, and four estimators of realized correlations with three synchronization schemes. Their finite sample properties are studied under four data generating processes, in presence, or not, of microstructure noise, and under synchronous and asynchronous trading. The main finding is that the pre-averaged version of disentangled estimators based on Gaussian ranks (for the correlations) and median deviations (for the volatilities) provide a precise, computationally efficient, and easy alternative to measure integrated covariances on the basis of noisy and asynchronous prices. Along these lines, a minimum variance portfolio application shows the superiority of this disentangled realized estimator in terms of numerous performance metrics. Chapter 4 is co-authored with Niels S. Hansen, Asger Lunde and Kasper V. Olesen, all affiliated with CREATES at Aarhus University. We propose to use the Realized Beta GARCH model to exploit the potential of high-frequency data in commodity markets. The model produces high quality forecasts of pairwise correlations between commodities which can be used to construct a composite covariance matrix. We evaluate the quality of this matrix in a portfolio context and compare it to models used in the industry. We demonstrate significant economic gains in a realistic setting including short selling constraints and transaction costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three types of forecasts of the total Australian production of macadamia nuts (t nut-in-shell) have been produced early each year since 2001. The first is a long-term forecast, based on the expected production from the tree census data held by the Australian Macadamia Society, suitably scaled up for missing data and assumed new plantings each year. These long-term forecasts range out to 10 years in the future, and form a basis for industry and market planning. Secondly, a statistical adjustment (termed the climate-adjusted forecast) is made annually for the coming crop. As the name suggests, climatic influences are the dominant factors in this adjustment process, however, other terms such as bienniality of bearing, prices and orchard aging are also incorporated. Thirdly, industry personnel are surveyed early each year, with their estimates integrated into a growers and pest-scouts forecast. Initially conducted on a 'whole-country' basis, these models are now constructed separately for the six main production regions of Australia, with these being combined for national totals. Ensembles or suites of step-forward regression models using biologically-relevant variables have been the major statistical method adopted, however, developing methodologies such as nearest-neighbour techniques, general additive models and random forests are continually being evaluated in parallel. The overall error rates average 14% for the climate forecasts, and 12% for the growers' forecasts. These compare with 7.8% for USDA almond forecasts (based on extensive early-crop sampling) and 6.8% for coconut forecasts in Sri Lanka. However, our somewhatdisappointing results were mainly due to a series of poor crops attributed to human reasons, which have now been factored into the models. Notably, the 2012 and 2013 forecasts averaged 7.8 and 4.9% errors, respectively. Future models should also show continuing improvement, as more data-years become available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many exchange rate papers articulate the view that instabilities constitute a major impediment to exchange rate predictability. In this thesis we implement Bayesian and other techniques to account for such instabilities, and examine some of the main obstacles to exchange rate models' predictive ability. We first consider in Chapter 2 a time-varying parameter model in which fluctuations in exchange rates are related to short-term nominal interest rates ensuing from monetary policy rules, such as Taylor rules. Unlike the existing exchange rate studies, the parameters of our Taylor rules are allowed to change over time, in light of the widespread evidence of shifts in fundamentals - for example in the aftermath of the Global Financial Crisis. Focusing on quarterly data frequency from the crisis, we detect forecast improvements upon a random walk (RW) benchmark for at least half, and for as many as seven out of 10, of the currencies considered. Results are stronger when we allow the time-varying parameters of the Taylor rules to differ between countries. In Chapter 3 we look closely at the role of time-variation in parameters and other sources of uncertainty in hindering exchange rate models' predictive power. We apply a Bayesian setup that incorporates the notion that the relevant set of exchange rate determinants and their corresponding coefficients, change over time. Using statistical and economic measures of performance, we first find that predictive models which allow for sudden, rather than smooth, changes in the coefficients yield significant forecast improvements and economic gains at horizons beyond 1-month. At shorter horizons, however, our methods fail to forecast better than the RW. And we identify uncertainty in coefficients' estimation and uncertainty about the precise degree of coefficients variability to incorporate in the models, as the main factors obstructing predictive ability. Chapter 4 focus on the problem of the time-varying predictive ability of economic fundamentals for exchange rates. It uses bootstrap-based methods to uncover the time-specific conditioning information for predicting fluctuations in exchange rates. Employing several metrics for statistical and economic evaluation of forecasting performance, we find that our approach based on pre-selecting and validating fundamentals across bootstrap replications generates more accurate forecasts than the RW. The approach, known as bumping, robustly reveals parsimonious models with out-of-sample predictive power at 1-month horizon; and outperforms alternative methods, including Bayesian, bagging, and standard forecast combinations. Chapter 5 exploits the predictive content of daily commodity prices for monthly commodity-currency exchange rates. It builds on the idea that the effect of daily commodity price fluctuations on commodity currencies is short-lived, and therefore harder to pin down at low frequencies. Using MIxed DAta Sampling (MIDAS) models, and Bayesian estimation methods to account for time-variation in predictive ability, the chapter demonstrates the usefulness of suitably exploiting such short-lived effects in improving exchange rate forecasts. It further shows that the usual low-frequency predictors, such as money supplies and interest rates differentials, typically receive little support from the data at monthly frequency, whereas MIDAS models featuring daily commodity prices are highly likely. The chapter also introduces the random walk Metropolis-Hastings technique as a new tool to estimate MIDAS regressions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a comprehensive study of out-of-sample forecasts for the EUR/USD exchange rate based on multivariate macroeconomic models and forecast combinations. We use profit maximization measures based on directional accuracy and trading strategies in addition to standard loss minimization measures. When comparing predictive accuracy and profit measures, data snooping bias free tests are used. The results indicate that forecast combinations, in particular those based on principal components of forecasts, help to improve over benchmark trading strategies, although the excess return per unit of deviation is limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doutoramento em Economia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doctor of Philosophy in Mathematics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a methodology for short-term load forecasting based on genetic algorithm feature selection and artificial neural network modeling. A feed forward artificial neural network is used to model the 24-h ahead load based on past consumption, weather and stock index data. A genetic algorithm is used in order to find the best subset of variables for modeling. Three data sets of different geographical locations, encompassing areas of different dimensions with distinct load profiles are used in order to evaluate the methodology. The developed approach was found to generate models achieving a minimum mean average percentage error under 2 %. The feature selection algorithm was able to significantly reduce the number of used features and increase the accuracy of the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coastal area along the Emilia-Romagna (ER), in the Italian side of the northern Adriatic Sea, is considered to implement an unstructured numerical ocean model with the aim to develop innovative tools for the coastal management and a forecasting system for the storm surge risk reduction. The Adriatic Sea has been the focus of several studies because of its peculiar dynamics driven by many forcings acting at basin and local scales. The ER coast is particularly exposed to storm surge events. In particular conditions, winds, tides and seicehs may combine and contribute to the flooding of the coastal area. The global sea level rise expected in the next decades will increase even more the hazard along the ER and Adriatic coast. Reliable Adriatic and Mediterranean scale numerical ocean models are now available to allow the dynamical downscaling of very high-resolution models in limited coastal areas. In this work the numerical ocean model SHYFEM is implemented in the Goro lagoon (named GOLFEM) and along the ER coast (ShyfER) to test innovative solutions against sea related coastal hazards. GOLFEM was succesfully applied to analyze the Goro lagoon dynamics and to assess the dynamical effects of human interventions through the analysis of what-if scenarios. The assessment of storm surge hazard in the Goro lagoon was carried out through the development of an ensemble storm surge forecasting system with GOLFEM using forcing from different operational meteorological and ocean models showing the fundamental importance of the boundary conditions. The ShyfER domain is used to investigate innovative solutions against storm surge related hazard along the ER coast. The seagrass is assessed as a nature-based solution (NBS) for coastal protection under present and future climate conditions. The results show negligible effects on sea level but sensible effects in reducing bottom current velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This coupled model combines two state-of-the-art numerical models, NEMO for the oceanic component and WRF for the atmospheric component and implements them at an appropriate resolution. The oceanic model has been implemented starting from the Mediterranean Forecasting System with a resolution of 1/24° and the domain was extended to exactly match the grid of a newly implemented atmospheric model for the same area. The uncoupled ocean model has been validated against SST observed data, both in the simulation of an extreme event and in the short-term forecast of two seasonal periods. A new setup of the model was successfully tested in which the downward radiative fluxes were prescribed from atmospheric forecasts. Various physical schemes, domain, boundary, and initial conditions were tested with the atmospheric model to obtain the best representation of medicane Ianos. The heat fluxes calculated by the uncoupled models were compared to determine which setup gave the best energy balance between the components of the coupled model. The coupling strategy used is the traditional one, where the ocean is driven by the surface stress, heat fluxes, and radiative fluxes computed in the atmospheric component, which in turn receives the SST and surface currents. As expected, the overall skills of the coupled model are slightly degraded compared to the uncoupled models, even though the positioning and timing of the cyclone at the time of the landfall is enhanced. The mean heat fluxes do not change compared to the uncoupled model, whereas the pattern of the shortwave radiation and latent heat is changed. Moreover, the two energy fluxes are larger in absolute values than those calculated with the MFS formulas. The fact that they have opposite signs give raise to a compensation error that limits the overall degradation of the coupled simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we investigate the role of applied physics in epidemiological surveillance through the application of mathematical models, network science and machine learning. The spread of a communicable disease depends on many biological, social, and health factors. The large masses of data available make it possible, on the one hand, to monitor the evolution and spread of pathogenic organisms; on the other hand, to study the behavior of people, their opinions and habits. Presented here are three lines of research in which an attempt was made to solve real epidemiological problems through data analysis and the use of statistical and mathematical models. In Chapter 1, we applied language-inspired Deep Learning models to transform influenza protein sequences into vectors encoding their information content. We then attempted to reconstruct the antigenic properties of different viral strains using regression models and to identify the mutations responsible for vaccine escape. In Chapter 2, we constructed a compartmental model to describe the spread of a bacterium within a hospital ward. The model was informed and validated on time series of clinical measurements, and a sensitivity analysis was used to assess the impact of different control measures. Finally (Chapter 3) we reconstructed the network of retweets among COVID-19 themed Twitter users in the early months of the SARS-CoV-2 pandemic. By means of community detection algorithms and centrality measures, we characterized users’ attention shifts in the network, showing that scientific communities, initially the most retweeted, lost influence over time to national political communities. In the Conclusion, we highlighted the importance of the work done in light of the main contemporary challenges for epidemiological surveillance. In particular, we present reflections on the importance of nowcasting and forecasting, the relationship between data and scientific research, and the need to unite the different scales of epidemiological surveillance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.