878 resultados para food production


Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a widening consensus around the fact that, in many developed countries, food production-consumption patterns are in recent years interested by a process of deep change towards diversification and re-localisation practices, as a counter-tendency to the trend to the increasing disconnection between farming and food, producers and consumers. The relevance of these initiatives doesn't certainly lie on their economic dimension, but rather in their intense diffusion and growth rate, their spontaneous and autonomous nature and, especially, their intrinsic innovative potential. These dynamics involve a wide range of actors around local food patterns, embedding short food supply chains initiatives within a more complex and wider process of rural development, based on principles of sustainability, multifunctionality and valorisation of endogenous resources. In this work we have been analysing these features through a multi-level perspective, with reference to the dynamics between niche and regime and the inherent characteristics of the innovation paths. We apply this approach, through a qualitative methodology, to the analysis of the experience of farmers’ markets and Solidarity-Based Consumers Groups (Gruppi di Acquisto Solidale) ongoing in Tuscany, seeking to highlight the dynamics that are affecting the establishment of this alternative food production-consumption model (and its related innovative potential) from within and from without. To verify if and in which conditions they can constitute a niche, a protected space where radical innovations can develop, we make reference to the three interrelated analytic dimensions of socio-technical systems: the actors (i.e. individuals. social groups, organisations), the rules and institutions system, and the artefacts (i.e. the material and immaterial contexts in which the actors move). Through it, we analyse the innovative potential of niches and the level of their structuration and , then, the mechanisms of system transition, focusing on the new dynamics within the niche and between the niche and the policy regime emerging after the growth of interest by mass-media and public institutions and their direct involvement in the initiatives. Following the development of these significant experiences, we explore more deeply social, economic, cultural, political and organisational factors affecting innovations in face-to-face interactions, underpinning the critical aspects (sharing of alternative values, coherence at individual choices level, frictions on organisational aspects, inclusion/exclusion, attitudes towards integration at territorial level), towards uncovering until to the emergence of tensions and the risks of opportunistic behaviours that might arise from their growth. Finally, a comparison with similar experiences abroad is drawn (specifically with Provence), in order to detect food for thought, potentially useful for leading regional initiativestowards transition path.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work qualitative aspects of products that fall outside the classic Italian of food production view will be investigated, except for the apricot, a fruit, however, less studied by the methods considered here. The development of computer systems and the advanced software systems dedicated for statistical processing of data, has permitted the application of advanced technologies including the analysis of niche products. The near-infrared spectroscopic analysis was applied to the chemical industry for over twenty years and, subsequently, was applied in food industry with great success for non-destructive in line and off-line analysis. The work that will be presented below range from the use of spectroscopy for the determination of some rheological indices of ice cream applications to the characterization of the main quality indices of apricots, fresh dates, determination of the production areas of pistachio. Next to the spectroscopy will be illustrated different methods of multivariate analysis for spectra interpretation or for the construction of qualitative models of estimation. The thesis is divided into four separate studies that consider the same number of products. Each one of it is introduced by its own premise and ended with its own bibliography. This studies are preceded by a general discussion on the state of art and the basics of NIR spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents SEELF (Sustainable EEL fishery) Index, a methodology for evaluation of European eel (Anguilla anguilla) for the implementation of an effective Eel Management Plan, as defined by EU Regulation No.1100/2007. SEELF uses internal and external indices, age and blood parameters, and selects suitable specimen for restocking; it is also a reliable tool for eel stock management. In fact, SEELF Index, was developed in two versions: SEELF A, to be used in field operations (catch&release, eel status monitoring) and SEELF B to be used for quality control (food production) and research (eel status monitoring). Health status was evaluated also by biomarker analysis (ChE), and data were compared with age of eel. Age determination was performed with otolith reading and fish scale reading and a calibration between the two methods was possible. The study area was the Comacchio lagoon, a brackish coastal lagoon in Italy, well known as an example of suitable environment for eel fishery, where the capability to use the local natural resources has long been a key factor for a successful fishery management. Comacchio lagoon is proposed as an area where an effective EMP can be performed, in agreement with the main features (management of basins, reduction of mortality due to predators,etc.) highlighted for designation of European Restocking Area (ERA). The ERA is a new concept, proposed as a pillar of a new strategy on eel management and conservation. Furthermore, the features of ERAs can be useful in the framework of European Scale Eel Management Plan (ESEMP), proposed as a European scale implementation of EMP, providing a more effectiveness of conservation measures for eel management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La presenza di Escherichia coli produttori di verocitotossine (VTEC o STEC) rappresenta una tra le più importanti cause di malattia alimentare attualmente presenti in Europa. La sua presenza negli allevamenti di animali destinati alla produzione di alimenti rappresenta un importante rischio per la salute del consumatore. In conseguenza di comuni contaminazioni che si realizzano nel corso della macellazione, della mungitura i VTEC possono essere presenti nelle carni e nel latte e rappresentano un grave rischio se la preparazione per il consumo o i processi di lavorazione non comportano trattamenti in grado d’inattivarli (es. carni crude o poco cotte, latte non pastorizzato, formaggi freschi a latte crudo). La contaminazione dei campi coltivati conseguente alla dispersione di letame o attraverso acque contaminate può veicolare questi stipiti che sono normalmente albergati nell’intestino di ruminanti (domestici e selvatici) e anche prodotti vegetali consumati crudi, succhi e perfino sementi sono stati implicati in gravi episodi di malattia con gravi manifestazioni enteriche e complicazioni in grado di causare quadri patologici gravi e anche la morte. Stipiti di VTEC patogeni ingeriti con gli alimenti possono causare sintomi gastroenterici, con diarrea acquosa o emorragica (nel 50% dei casi), crampi addominali, febbre lieve e in una percentuale più bassa nausea e vomito. In alcuni casi (circa 5-10%) l’infezione gastroenterica si complica con manifestazioni tossiemiche caratterizzate da Sindrome Emolitico Uremica (SEU o HUS) con anemia emolitica, insufficienza renale grave e coinvolgimento neurologico o con una porpora trombotica trombocitopenica. Il tasso di mortalità dei pazienti che presentano l’infezione da E. coli è inferiore all’1%. I dati forniti dall’ECDC sulle infezioni alimentari nel periodo 2006-2010 hanno evidenziato un trend in leggero aumento del numero di infezioni a partire dal 2007. L’obiettivo degli studi condotti è quello di valutare la prevalenza ed il comportamento dei VTEC per una analisi del rischio più approfondita.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The promising development in the routine nanofabrication and the increasing knowledge of the working principles of new classes of highly sensitive, label-free and possibly cost-effective bio-nanosensors for the detection of molecules in liquid environment, has rapidly increased the possibility to develop portable sensor devices that could have a great impact on many application fields, such as health-care, environment and food production, thanks to the intrinsic ability of these biosensors to detect, monitor and study events at the nanoscale. Moreover, there is a growing demand for low-cost, compact readout structures able to perform accurate preliminary tests on biosensors and/or to perform routine tests with respect to experimental conditions avoiding skilled personnel and bulky laboratory instruments. This thesis focuses on analysing, designing and testing novel implementation of bio-nanosensors in layered hybrid systems where microfluidic devices and microelectronic systems are fused in compact printed circuit board (PCB) technology. In particular the manuscript presents hybrid systems in two validating cases using nanopore and nanowire technology, demonstrating new features not covered by state of the art technologies and based on the use of two custom integrated circuits (ICs). As far as the nanopores interface system is concerned, an automatic setup has been developed for the concurrent formation of bilayer lipid membranes combined with a custom parallel readout electronic system creating a complete portable platform for nanopores or ion channels studies. On the other hand, referring to the nanowire readout hybrid interface, two systems enabling to perform parallel, real-time, complex impedance measurements based on lock-in technique, as well as impedance spectroscopy measurements have been developed. This feature enable to experimentally investigate the possibility to enrich informations on the bio-nanosensors concurrently acquiring impedance magnitude and phase thus investigating capacitive contributions of bioanalytical interactions on biosensor surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La Tesi analizza le relazioni tra i processi di sviluppo agricolo e l’uso delle risorse naturali, in particolare di quelle energetiche, a livello internazionale (paesi in via di sviluppo e sviluppati), nazionale (Italia), regionale (Emilia Romagna) e aziendale, con lo scopo di valutare l’eco-efficienza dei processi di sviluppo agricolo, la sua evoluzione nel tempo e le principali dinamiche in relazione anche ai problemi di dipendenza dalle risorse fossili, della sicurezza alimentare, della sostituzione tra superfici agricole dedicate all’alimentazione umana ed animale. Per i due casi studio a livello macroeconomico è stata adottata la metodologia denominata “SUMMA” SUstainability Multi-method, multi-scale Assessment (Ulgiati et al., 2006), che integra una serie di categorie d’impatto dell’analisi del ciclo di vita, LCA, valutazioni costi-benefici e la prospettiva di analisi globale della contabilità emergetica. L’analisi su larga scala è stata ulteriormente arricchita da un caso studio sulla scala locale, di una fattoria produttrice di latte e di energia elettrica rinnovabile (fotovoltaico e biogas). Lo studio condotto mediante LCA e valutazione contingente ha valutato gli effetti ambientali, economici e sociali di scenari di riduzione della dipendenza dalle fonti fossili. I casi studio a livello macroeconomico dimostrano che, nonostante le politiche di supporto all’aumento di efficienza e a forme di produzione “verdi”, l’agricoltura a livello globale continua ad evolvere con un aumento della sua dipendenza dalle fonti energetiche fossili. I primi effetti delle politiche agricole comunitarie verso una maggiore sostenibilità sembrano tuttavia intravedersi per i Paesi Europei. Nel complesso la energy footprint si mantiene alta poiché la meccanizzazione continua dei processi agricoli deve necessariamente attingere da fonti energetiche sostitutive al lavoro umano. Le terre agricole diminuiscono nei paesi europei analizzati e in Italia aumentando i rischi d’insicurezza alimentare giacché la popolazione nazionale sta invece aumentando.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crop water requirements are important elements for food production, especially in arid and semiarid regions. These regions are experience increasing population growth and less water for agriculture, which amplifies the need for more efficient irrigation. Improved water use efficiency is needed to produce more food while conserving water as a limited natural resource. Evaporation (E) from bare soil and Transpiration (T) from plants is considered a critical part of the global water cycle and, in recent decades, climate change could lead to increased E and T. Because energy is required to break hydrogen bonds and vaporize water, water and energy balances are closely connected. The soil water balance is also linked with water vapour losses to evapotranspiration (ET) that are dependent mainly on energy balance at the Earth’s surface. This work addresses the role of evapotranspiration for water use efficiency by developing a mathematical model that improves the accuracy of crop evapotranspiration calculation; accounting for the effects of weather conditions, e.g., wind speed and humidity, on crop coefficients, which relates crop evapotranspiration to reference evapotranspiration. The ability to partition ET into Evaporation and Transpiration components will help irrigation managers to find ways to improve water use efficiency by decreasing the ratio of evaporation to transpiration. The developed crop coefficient model will improve both irrigation scheduling and water resources planning in response to future climate change, which can improve world food production and water use efficiency in agriculture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Foodborne diseases impact human health and economies worldwide in terms of health care and productivity loss. Prevention is necessary and methods to detect, isolate and quantify foodborne pathogens play a fundamental role, changing continuously to face microorganisms and food production evolution. Official methods are mainly based on microorganisms growth in different media and their isolation on selective agars followed by confirmation of presumptive colonies through biochemical and serological test. A complete identification requires form 7 to 10 days. Over the last decades, new molecular techniques based on antibodies and nucleic acids allow a more accurate typing and a faster detection and quantification. The present thesis aims to apply molecular techniques to improve official methods performances regarding two pathogens: Shiga-like Toxin-producing Escherichia coli (STEC) and Listeria monocytogenes. In 2011, a new strain of STEC belonging to the serogroup O104 provoked a large outbreak. Therefore, the development of a method to detect and isolate STEC O104 is demanded. The first objective of this work is the detection, isolation and identification of STEC O104 in sprouts artificially contaminated. Multiplex PCR assays and antibodies anti-O104 incorporated in reagents for immunomagnetic separation and latex agglutination were employed. Contamination levels of less than 1 CFU/g were detected. Multiplex PCR assays permitted a rapid screening of enriched food samples and identification of isolated colonies. Immunomagnetic separation and latex agglutination allowed a high sensitivity and rapid identification of O104 antigen, respectively. The development of a rapid method to detect and quantify Listeria monocytogenes, a high-risk pathogen, is the second objective. Detection of 1 CFU/ml and quantification of 10–1,000 CFU/ml in raw milk were achieved by a sample pretreatment step and quantitative PCR in about 3h. L. monocytogenes growth in raw milk was also evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanotechnologies are rapidly expanding because of the opportunities that the new materials offer in many areas such as the manufacturing industry, food production, processing and preservation, and in the pharmaceutical and cosmetic industry. Size distribution of the nanoparticles determines their properties and is a fundamental parameter that needs to be monitored from the small-scale synthesis up to the bulk production and quality control of nanotech products on the market. A consequence of the increasing number of applications of nanomaterial is that the EU regulatory authorities are introducing the obligation for companies that make use of nanomaterials to acquire analytical platforms for the assessment of the size parameters of the nanomaterials. In this work, Asymmetrical Flow Field-Flow Fractionation (AF4) and Hollow Fiber F4 (HF5), hyphenated with Multiangle Light Scattering (MALS) are presented as tools for a deep functional characterization of nanoparticles. In particular, it is demonstrated the applicability of AF4-MALS for the characterization of liposomes in a wide series of mediums. Afterwards the technique is used to explore the functional features of a liposomal drug vector in terms of its biological and physical interaction with blood serum components: a comprehensive approach to understand the behavior of lipid vesicles in terms of drug release and fusion/interaction with other biological species is described, together with weaknesses and strength of the method. Afterwards the size characterization, size stability, and conjugation of azidothymidine drug molecules with a new generation of metastable drug vectors, the Metal Organic Frameworks, is discussed. Lastly, it is shown the applicability of HF5-ICP-MS for the rapid screening of samples of relevant nanorisk: rather than a deep and comprehensive characterization it this time shown a quick and smart methodology that within few steps provides qualitative information on the content of metallic nanoparticles in tattoo ink samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A growing world population, changing climate and limiting fossil fuels will provide new pressures on human production of food, medicine, fuels and feed stock in the twenty-first century. Enhanced crop production promises to ameliorate these pressures. Crops can be bred for increased yields of calories, starch, nutrients, natural medicinal compounds, and other important products. Enhanced resistance to biotic and abiotic stresses can be introduced, toxins removed, and industrial qualities such as fibre strength and biofuel per mass can be increased. Induced and natural mutations provide a powerful method for the generation of heritable enhanced traits. While mainly exploited in forward, phenotype driven, approaches, the rapid accumulation of plant genomic sequence information and hypotheses regarding gene function allows the use of mutations in reverse genetic approaches to identify lesions in specific target genes. Such gene-driven approaches promise to speed up the process of creating novel phenotypes, and can enable the generation of phenotypes unobtainable by traditional forward methods. TILLING (Targeting Induced Local Lesions IN Genome) is a high-throughput and low cost reverse genetic method for the discovery of induced mutations. The method has been modified for the identification of natural nucleotide polymorphisms, a process called Ecotilling. The methods are general and have been applied to many species, including a variety of different crops. In this chapter the current status of the TILLING and Ecotilling methods and provide an overview of progress in applying these methods to different plant species, with a focus on work related to food production for developing nations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the past decade, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae have become a matter of great concern in human medicine. ESBL-producing strains are found in the community, not just in hospital-associated patients, which raises a question about possible reservoirs. Recent studies describe the occurrence of ESBL-producing Enterobacteriaceae in meat, fish, and raw milk; therefore, the impact of food animals as reservoirs for and disseminators of such strains into the food production chain must be assessed. In this pilot study, fecal samples of 59 pigs and 64 cattle were investigated to determine the occurrence of ESBL-producing Enterobacteriaceae in farm animals at slaughter in Switzerland. Presumptive-positive colonies on Brilliance ESBL agar were subjected to identification and antibiotic susceptibility testing including the disc diffusion method and E-test ESBL strips. As many as 15.2% of the porcine and 17.1% of the bovine samples, predominantly from calves, yielded ESBL producers. Of the 21 isolated strains, 20 were Escherichia coli, and one was Citrobacter youngae. PCR analysis revealed that 18 strains including C. youngae produced CTX-M group 1 ESBLs, and three strains carried genes encoding for CTX-M group 9 enzymes. In addition, eight isolates were PCR positive for TEM beta-lactamase, but no bla(SHV) genes were detected. Pulsed-field gel electrophoresis showed a high genetic diversity within the strains. The relatively high rates of occurrence of ESBLproducing strains in food animals and the high genetic diversity among these strains indicate that there is an established reservoir of these organisms in farm animals. Further studies are necessary to assess future trends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Campylobacter coli is a food-borne zoonotic pathogen causing human gastroenteritis worldwide. The organism is a commensal in the intestine of many food production animals including fattening pigs. The role of the pig as a potential reservoir for C. coli affecting human either directly or via poultry has hardly been investigated and genetic characterization of porcine strains is needed to address this question. For this aim multilocus sequence typing (MLST) and flaB typing was applied to 256 C. coli isolates from faeces of fattening pig collected during 2009 at different slaughterhouses in Switzerland. In addition genotypic resistances towards macrolides and quinolones based on point mutations in the 23S rRNA and gyrA genes, respectively, were determined. Of the 67 sequence types (STs) obtained by MLST, 37 were found for the first time. flaB typing revealed 46 different types with 14 of them being novel and was useful to further differentiate strains with an identical ST. Quinolone resistance was detected in 33.6% and macrolide resistance was found in 10.6% of isolates. Comparison with 99 C. coli pig isolates from 2001 revealed a significant decrease in antibiotic resistance towards both groups of antibiotics and there was high overlap between genotypes of 2001 and 2009. Little overlap of porcine genotypes was found with 97 C. coli isolates from poultry collected 2008, however, macrolide resistance was significantly higher in pig isolates. In conclusion, C. coli from Swiss pig are heterogeneous containing many novel STs, findings that could reflect the partitioned Swiss pig production with almost no international breed exchange. The antibiotic resistance echoes the use of corresponding drugs in the Swiss livestock production and indicates the efficacy of restrictive application of antibiotics in order to reduce resistances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper examines the social impacts of weather extremes and the processes of social and communicative learning a society undertakes to find alternative ways to deal with the consequences of a crisis. In the beginning of the 20th Century hunger seemed to be expelled from Europe. Switzerland – like many other European countries – was involved in a global interdependent trade system, which provided necessary goods. But at the end of World War I very cold and wet summers in 1916/17 (causing crop failure) and the difficulties in war-trade led to malnutrition and enormous price risings of general living-standards in Switzerland, which shocked the people and caused revolutionary uprisings in 1918. The experience of malnutrition during the last two years of war made clear that the traditional ways of food supply in Switzerland lacked crisis stability. Therefore various agents in the field of food production, distribution and consumption searched for alternative ways of food supply. In that sense politicians, industrialists, consumer-groups, left-wing communitarians and farmers developed several strategies for new ways in food production. Traditionally there were political conflicts in Switzerland between farmers and consumers regarding price policies, which led mainly to the conflict in 1918. Consumers accused famers of holding back food to control extortionate prices while the farmers pointed to the bad harvest causing the price rising. The collaboration of these groups in search for new forms of food-stability made social integration possible again. In addition to other crisis-factors, weather extremes can have disastrous impacts and destroy a society’s self-confidence to its core. But even such crisis can lead to processes of substantial learning that allows a regeneration of confidence and show positive influence on political stabilization. The paper focuses on the process of learning and the alternative methods of food production that were suggested by various agents working in the field during the Interwar period. To achieve that goal documents of the various associations are analyzed and newspapers have been taken into consideration. Through the method of discourse-analysis of food-production during the Interwar period, possible solutions that crossed the minds of the agents should be brought to light.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. METHODS Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. RESULTS There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature:immature crosslink ratio. CONCLUSIONS The improved skeletal health in laying hens corresponds to as many as 68million fewer hens suffering keel fractures in the EU each year. The biomechanical and biochemical evidence suggests that increased bone turnover has enhanced the bone mechanical properties, and that this may suggest potential benefits for human osteoporosis.