959 resultados para fluvial geomorphology
Resumo:
Snakehead fishes in the family Channidae are obligate freshwater fishes represented by two extant genera, the African Parachannna and the Asian Channa. These species prefer still or slow flowing water bodies, where they are top predators that exercise high levels of parental care, have the ability to breathe air, can tolerate poor water quality, and interestingly, can aestivate or traverse terrestrial habitat in response to seasonal changes in freshwater habitat availability. These attributes suggest that snakehead fishes may possess high dispersal potential, irrespective of the terrestrial barriers that would otherwise constrain the distribution of most freshwater fishes. A number of biogeographical hypotheses have been developed to account for the modern distributions of snakehead fishes across two continents, including ancient vicariance during Gondwanan break-up, or recent colonisation tracking the formation of suitable climatic conditions. Taxonomic uncertainty also surrounds some members of the Channa genus, as geographical distributions for some taxa across southern and Southeast (SE) Asia are very large, and in one case is highly disjunct. The current study adopted a molecular genetics approach to gain an understanding of the evolution of this group of fishes, and in particular how the phylogeography of two Asian species may have been influenced by contemporary versus historical levels of dispersal and vicariance. First, a molecular phylogeny was constructed based on multiple DNA loci and calibrated with fossil evidence to provide a dated chronology of divergence events among extant species, and also within species with widespread geographical distributions. The data provide strong evidence that trans-continental distribution of the Channidae arose as a result of dispersal out of Asia and into Africa in the mid–Eocene. Among Asian Channa, deep divergence among lineages indicates that the Oligocene-Miocene boundary was a time of significant species radiation, potentially associated with historical changes in climate and drainage geomorphology. Mid-Miocene divergence among lineages suggests that a taxonomic revision is warranted for two taxa. Deep intra-specific divergence (~8Mya) was also detected between C. striata lineages that occur sympatrically in the Mekong River Basin. The study then examined the phylogeography and population structure of two major taxa, Channa striata (the chevron snakehead) and the C. micropeltes (the giant snakehead), across SE Asia. Species specific microsatellite loci were developed and used in addition to a mitochondrial DNA marker (Cyt b) to screen neutral genetic variation within and among wild populations. C. striata individuals were sampled across SE Asia (n=988), with the major focus being the Mekong Basin, which is the largest drainage basin in the region. The distributions of two divergent lineages were identified and admixture analysis showed that where they co-occur they are interbreeding, indicating that after long periods of evolution in isolation, divergence has not resulted in reproductive isolation. One lineage is predominantly confined to upland areas of northern Lao PDR to the north of the Khorat Plateau, while the other, which is more closely related to individuals from southern India, has a widespread distribution across mainland SE Asian and Sumatra. The phylogeographical pattern recovered is associated with past river networks, and high diversity and divergence among all populations sampled reveal that contemporary dispersal is very low for this taxon, even where populations occur in contiguous freshwater habitats. C. micropeltes (n=280) were also sampled from across the Mekong River Basin, focusing on the lower basin where it constitutes an important wild fishery resource. In comparison with C. striata, allelic diversity and genetic divergence among populations were extremely low, suggesting very recent colonisation of the greater Mekong region. Populations were significantly structured into at least three discrete populations in the lower Mekong. Results of this study have implications for establishing effective conservation plans for managing both species, that represent economically important wild fishery resources for the region. For C. micropeltes, it is likely that a single fisheries stock in the Tonle Sap Great Lake is being exploited by multiple fisheries operations, and future management initiatives for this species in this region will need to account for this. For C. striata, conservation of natural levels of genetic variation will require management initiatives designed to promote population persistence at very localised spatial scales, as the high level of population structuring uncovered for this species indicates that significant unique diversity is present at this fine spatial scale.
Resumo:
Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.
Resumo:
1. The phylogeography of freshwater taxa is often integrally linked with landscape changes such as drainage re-alignments that may present the only avenue for historical dispersal for these taxa. Classical models of gene flow do not account for landscape changes and so are of little use in predicting phylogeography in geologically young freshwater landscapes. When the history of drainage formation is unknown, phylogeographical predictions can be based on current freshwater landscape structure, proposed historical drainage geomorphology, or from phylogeographical patterns of co-distributed taxa. 2. This study describes the population structure of a sedentary freshwater fish, the chevron snakehead (Channa striata), across two river drainages on the Indochinese Peninsula. The phylogeographical pattern recovered for C. striata was tested against seven hypotheses based on contemporary landscape structure, proposed history and phylogeographical patterns of codistributed taxa. 3. Consistent with the species ecology, analysis of mitochondrial and microsatellite loci revealed very high differentiation among all sampled sites. A strong signature of historical population subdivision was also revealed within the contemporary Mekong River Basin (MRB). Of the seven phylogeographical hypotheses tested, patterns of co-distributed taxa proved to be the most adequate for describing the phylogeography of C. striata. 4. Results shed new light on SE Asian drainage evolution, indicating that the Middle MRB probably evolved via amalgamation of at least three historically independent drainage sections and in particular that the Mekong River section centred around the northern Khorat Plateau in NE Thailand was probably isolated from the greater Mekong for an extensive period of evolutionary time. In contrast, C. striata populations in the Lower MRB do not show a phylogeographical signature of evolution in historically isolated drainage lines, suggesting drainage amalgamation has been less important for river landscape formation in this region.
Resumo:
Biotites and muscovites from a gneiss have been experimentally shocked between 18 and 70 GPa using powder-propellant guns at NASA Johnson Space Center and at the California Institute of Technology. This study shows that shock in biotite and muscovite can produce homogeneous and devolatilized glasses within microseconds. Shock-deformed micas display fracturing, kinking, and complex extinction patterns over the entire pressure range investigated. However, these deformation features are not a sensitive pressure indicator. Localized melting of micas begins at 33 GPa and goes to completion at 70 GPa. Melted biotite and muscovite are optically opaque, but show extensive microvesiculation and flow when observed with the SEM. Electron diffraction confirms that biotite and muscovite have transformed to a glass. The distribution of vesicles in shock-vitrified mica shows escape of volatiles within the short duration of the shock experiment. Experimentally shocked biotite and muscovite undergo congruent melting. Compositions of the glasses are similar to the unshocked micas except for volatiles (H2O loss and K loss). These unusual glasses derived from mica may be quenched by rapid cooling conditions during the shock experiment. Based on these results, the extremely low H2O content of tektites may be reconciled with a terrestrial origin by impact. Release of volatiles in shock-melted micas affects the melting behavior of coexisting dry silicates during the short duration of the shock experiment. Transportation and escape of volatiles released from shock-melted micas may provide plausible mechanisms for the origin of protoatmospheres on terrestrial planets, hydrothermal activity on phyllosilicate-rich meteorite parent bodies, and fluid entrapment in meteorites.
Resumo:
This chapter introduces the principles of coring, including the objectives for taking a good core and the major factors that should be considered to ensure the collection of non disturbed, representative core samples. The chapter also provides an overview of the design, function, and operation of the main types of coring equipment that can be used to sample sediments from a variety of settings including lakes, the ocean, peat bogs, soils, and permafrost. The major advantages and disadvantages of each type of corer are also discussed.
Resumo:
This chapter provides researchers with a guide to some of the types of dating techniques that can be used in geomorpological investigations and issues that need to be addressed when using gechronological data, specifically issues relating to accuracy and precision. This chapter also introduces the 'types' of dating methods that are commonly used in geomorphological studies. This includes sidereal, isotopic, radiogenic, and chemical dating methods.
Resumo:
Temperate Australia sits between the heat engine of the tropics and the cold Southern Ocean, encompassing a range of rainfall regimes and falling under the influence of different climatic drivers. Despite this heterogeneity, broad-scale trends in climatic and environmental change are evident over the past 30 ka. During the early glacial period (∼30–22 ka) and the Last Glacial Maximum (∼22–18 ka), climate was relatively cool across the entire temperate zone and there was an expansion of grasslands and increased fluvial activity in regionally important Murray–Darling Basin. The temperate region at this time appears to be dominated by expanded sea ice in the Southern Ocean forcing a northerly shift in the position of the oceanic fronts and a concomitant influx of cold water along the southeast (including Tasmania) and southwest Australian coasts. The deglacial period (∼18–12 ka) was characterised by glacial recession and eventual disappearance resulting from an increase in temperature deduced from terrestrial records, while there is some evidence for climatic reversals (e.g. the Antarctic Cold Reversal) in high resolution marine sediment cores through this period. The high spatial density of Holocene terrestrial records reveals an overall expansion of sclerophyll woodland and rainforest taxa across the temperate region after ∼12 ka, presumably in response to increasing temperature, while hydrological records reveal spatially heterogeneous hydro-climatic trends. Patterns after ∼6 ka suggest higher frequency climatic variability that possibly reflects the onset of large scale climate variability caused by the El Niño/Southern Oscillation.
Resumo:
In large sedimentary basins with layers of different rocks, the groundwater flow between aquifers depends on the hydraulic conductivity (K) of the separating low-permeable rocks, or aquitards. Three methods were developed to evaluate K in aquitards for areas with limited field data: • Coherence and harmonic analysis: estimates the regional-scale K based on water-level fluctuations in adjacent aquifers. • Cokriging and Bayes' rule: infers K from downhole geophysical logs. • Fluvial process model: reproduces the lithology architecture of sediment formations which can be converted to K. These proposed methods enable good estimates of K and better planning of further drillholes.
Resumo:
SITEWORKS is an interdisciplinary research and practice project that invites artists, scientists and scholars to respond to the Bundanon property through the lens of their specific discipline. Over four years this has led to a series of interactive projects, many utilising electronic technologies. The inaugural investigations focussed on the geomorphology of the site and palaeoenvironmental research, specifically in the area of sea level rise and climate change [1]. In subsequent years the focus has been on water and the river; land management; Indigenous cultural heritage, and food security.