998 resultados para fixação do N2
Resumo:
Secondary pyrolysis in fluidized bed fast pyrolysis of biomass is the focus of this work. A novel computational fluid dynamics (CFD) model coupled with a comprehensive chemistry scheme (134 species and 4169 reactions, in CHEMKIN format) has been developed to investigate this complex phenomenon. Previous results from a transient three-dimensional model of primary pyrolysis were used for the source terms of primary products in this model. A parametric study of reaction atmospheres (H2O, N2, H2, CO2, CO) has been performed. For the N2 and H2O atmosphere, results of the model compared favorably to experimentally obtained yields after the temperature was adjusted to a value higher than that used in experiments. One notable deviation versus experiments is pyrolytic water yield and yield of higher hydrocarbons. The model suggests a not overly strong impact of the reaction atmosphere. However, both chemical and physical effects were observed. Most notably, effects could be seen on the yield of various compounds, temperature profile throughout the reactor system, residence time, radical concentration, and turbulent intensity. At the investigated temperature (873 K), turbulent intensity appeared to have the strongest influence on liquid yield. With the aid of acceleration techniques, most importantly dimension reduction, chemistry agglomeration, and in-situ tabulation, a converged solution could be obtained within a reasonable time (∼30 h). As such, a new potentially useful method has been suggested for numerical analysis of fast pyrolysis.
Resumo:
In this work, we report high growth rate of nanocrystalline diamond (NCD) films on silicon wafers of 2 inches in diameter using a new growth regime, which employs high power and CH4/H2/N2/O2 plasma using a 5 kW MPCVD system. This is distinct from the commonly used hydrogen-poor Ar/CH4 chemistries for NCD growth. Upon rising microwave power from 2000 W to 3200 W, the growth rate of the NCD films increases from 0.3 to 3.4 μm/h, namely one order of magnitude enhancement on the growth rate was achieved at high microwave power. The morphology, grain size, microstructure, orientation or texture, and crystalline quality of the NCD samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and micro-Raman spectroscopy. The combined effect of nitrogen addition, microwave power, and temperature on NCD growth is discussed from the point view of gas phase chemistry and surface reactions. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Resumo:
Mesoscale eddies play a major role in controlling ocean biogeochemistry. By impacting nutrient availability and water column ventilation, they are of critical importance for oceanic primary production. In the eastern tropical South Pacific Ocean off Peru, where a large and persistent oxygen-deficient zone is present, mesoscale processes have been reported to occur frequently. However, investigations into their biological activity are mostly based on model simulations, and direct measurements of carbon and dinitrogen (N2) fixation are scarce. We examined an open-ocean cyclonic eddy and two anticyclonic mode water eddies: a coastal one and an open-ocean one in the waters off Peru along a section at 16°S in austral summer 2012. Molecular data and bioassay incubations point towards a difference between the active diazotrophic communities present in the cyclonic eddy and the anticyclonic mode water eddies. In the cyclonic eddy, highest rates of N2 fixation were measured in surface waters but no N2 fixation signal was detected at intermediate water depths. In contrast, both anticyclonic mode water eddies showed pronounced maxima in N2 fixation below the euphotic zone as evidenced by rate measurements and geochemical data. N2 fixation and carbon (C) fixation were higher in the young coastal mode water eddy compared to the older offshore mode water eddy. A co-occurrence between N2 fixation and biogenic N2, an indicator for N loss, indicated a link between N loss and N2 fixation in the mode water eddies, which was not observed for the cyclonic eddy. The comparison of two consecutive surveys of the coastal mode water eddy in November 2012 and December 2012 also revealed a reduction in N2 and C fixation at intermediate depths along with a reduction in chlorophyll by half, mirroring an aging effect in this eddy. Our data indicate an important role for anticyclonic mode water eddies in stimulating N2 fixation and thus supplying N offshore.
Resumo:
Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum(IMS101) showed that increasing CO2 partial pressure (pCO2) enhances N2 fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO2, its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses ofTrichodesmium IMS101 grown under a matrix of low and high levels of pCO2 (150 and 900 µatm) and irradiance (50 and 200 µmol photons m-2 s-1). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO2 and light levels in the cultures. The pCO2-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO2 stimulated rates of N2fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO2. HCO3- was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO2 uptake was enhanced under high pCO2. A comparison between carbon fluxes in vivo and those derived from 13C fractionation indicates high internal carbon cycling, especially in the low-pCO2treatment under high light. Light-dependent oxygen uptake was only detected underlow pCO2 combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO2 effect on N2fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO2. These findings are supported by a complementarystudy looking at photosynthetic fluorescence parameters of photosystem II, photosynthetic unit stoichiometry (photosystem I:photosystem II), and pool sizes of key proteins in carbon and nitrogen acquisition.
Resumo:
Este texto, define o trabalho final do Mestrado em Música da Universidade de Aveiro, e é um documento de apoio ao projeto artístico. Tem por objetivo perceber a importância dos compositores, Bach, Mozart e Beethoven, sobre Felix Mendelssohn “Bartholdy”, analisando o impacto que eles tiveram sobre o curso de vida desta compositor e até a que ponto influenciaram as suas obras. Centro-me na análise das sonatas em Sí bemol Maior, e Ré Maior para violoncelo e piano, que também é apresentada neste projeto, e cuja performance constitui o repertório do recital na defesa do trabalho. Inclui ainda uma reflexão sobre a liberdade criativa no quadro da composição e da interpretação musical, articulando este conceito com os nossos limites enquanto artistas “originais”.
Resumo:
Entre los miles de lepidópteros coleccionados por el Dr. Adolf Zilch durante su estancia en El Salvador se hallaban 204 sphingidae de 33 especies donde no se anota diferentemente los animales proceden de San Salvador. Todos fueron coleccionados mediante captura por luz, por ofrecerse precisamente buena ocasión para aquel método en el Instituto Tropical de Investigaciones Científicas de El Salvador. Los faroles colocados alrededor del Instituto atraían con su luz resplandeciente masas de insectos noche tras noche y el Dr. Zilch los coleccionaba cada tres o cuatro horas en la pared iluminada del edificio. En los anales del Instituto de Biología de 1942, Carlos especificó para México 154 especies de sphingidae.
Resumo:
Purposes. The optimal treatment of N2 non-small cell lung cancer (NSCLC) in older patients is still debate and represent an important treatment and ethical problem. Patients and methods. Between January 2000 to December 2010, 273 older patients underwent lung resection for (NSCLC). Results. The overall-operative mortality was 9.5%. Risk factors for in-hospital mortality were pneumonectomy and poli-vasculopathy. One, 3 and 5-year survival were 73%, 23% and 16% respectively. Conclusions. In potentially operable older patients with NSCLC we need to make every effort to exclude N2 involvement because very poor long-term survival. Pneumonectomy in older patients gains prohibitive in-hospital mortality.
Resumo:
Discs were grade II cp Ti oxynitride by plasma of Ar - N2 - O2 using different proportions of individual gases. These ratios were established from analysis of optical emission spectroscopy (OES) of plasma species. The proportions that resulted in species whose spectra showed an abrupt change of light intensity were chosen for this study. Nanohardness tests revealed that there was a correlation between the intensity of N2 + species with the hardness, because the treatments where they had a higher intensity, obtained a higher value nanohardness, although the crystalline phases have remained unchanged. With respect to topography, it was observed that in general, the surface roughness is related to the intensities of plasma species, because they may have different values depending on the behavior of the species. Images obtained by optical microscopy revealed a surface with grains of different colors to optical reflectance showed a peak of reflection in the red area. Measures the contact angle and surface tension showed hydrophilic properties and hydrophilic with little variation of polar and dispersive components of surface tension
Resumo:
This work reports the influence of the poly (ethylene terephthalate) textile and films surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The plasma surface polymeric modification has been used for many researchs, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, the treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min, using oxygen plasma alternating the treatment time 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) which was varied only the gas composition from 0 to 100% leaving the treatment time remaining constant to all treatment (10 min). The plasma treatment was characterized in-situ with Optics Emission Spectroscopy (OES), and the samples was characterized by contact angle, surface tension, Through Capillary tests, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, scanning electronic Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The results showed that oxygen treated fabrics presented high wettability, due to the hydrophilic groups incorporation onto the surface formed through spputering of carbon atoms. For the nitrogen atmosphere, there is the a film deposition of amine groups. Treatment with small oxygen concentration in the mixture with nitrogen has a higher spputered species of the samples