798 resultados para femtosecond laser filament


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-fiber microchannels were fabricated directly in standard single mode fiber using the femtosecond laser inscribe and etch technique. This method of creating in-fiber microchannels offers great versatility, since it allows complex three-dimensional structures to be inscribed and then preferentially etched with hydrofluoric acid. In addition, inscription does not require a photosensitive fiber; the modification is induced through nonlinear processes triggered by an ultrashort laser pulse. Four in-fiber microchannel designs were experimentally investigated using this technique - microhole, microslot channel along the core, microslot channel perpendicular to the core and helical channel around the core. Each device design was evaluated through monitoring the optical spectral change while inserting a range of index matching oils into each microchannel; an R.I. sensitivity up to 1.55 dB/RIU was achieved in these initial tests. Furthermore, an all femtosecond laser inscribed Fabry-Pérot-based refractometer with an R.I. sensitivity of 2.75 nm/RIU was also demonstrated. The Fabry-Pérot refractometer was formed by positioning a microchannel between two femtosecond laser inscribed point-by-point fiber Bragg gratings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber optic sensors are fabricated for detecting static magnetic fields. The sensors consist of a UV inscribed long period grating with two 50 micron long microslots. The microslots are fabricated using the femtosecond laser based inscribe and etch technique. The microslots and the fiber surface are coated with a magnetostrictive material Terfenol-D. A spectral sensitivity of 1.15 pm/mT was measured in transmission with a working resolution of ±0.2 mT for a static magnetic field strength below 10 mT. These devices also present a different response when the spatial orientation of the fiber was adjusted relative to the magnetic field lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral properties of long-period gratings (LPGs) fabricated in photonic crystal fibers using femtosecond laser pulses by the point-by-point technique, without oil-immersion of the fiber, are investigated in detail. Postfabrication spectral monitoring at room temperature showed significant long-term instability of the gratings and stable spectra only after 600 h. The stabilized spectral properties of the gratings improved with increasing annealing temperature. The observed changes in resonant wavelength, optical strength, and grating birefringence were correlated to the laser inscription energy and were further used to study the mechanism of femtosecond inscription. Furthermore, the femtosecond-laser inscribed LPGs were compared to electric-arc fabricated LPGs. Comparison of experimental results with theoretical models of LPGs and laser propagation during inscription indicate that the major processes responsible for the index change are permanent compaction and thermally induced strain, the latter can be significantly changed through annealing. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of experimental and theoretical study of an energy absorption of femtosecond laser pulse in fused silica. Fundamental and second harmonics of ytterbium laser were used in experiment while general case was considered theoretically and numerically. More efficient absorption at the second harmonics is confirmed both experimentally and numerically. Quantitative characterization of the theoretical model is performed by fitting key parameters of the absorption process such as cross-section of multi-photon absorption and effective electronic collision and recombination times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-channel fiber Bragg grating (TC-FBG) consisting of two localized sub-gratings parallel in the fiber core is fabricated by femtosecond laser. Utilizing the fabricated TC-FBG, stable and switchable dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. © 2015 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface nanoscale axial photonics (SNAP) structures are fabricated with a femtosecond laser for the first time, to the best of our knowledge. The inscriptions introduced by the laser pressurize the fiber and cause its nanoscale effective radius variation. We demonstrate the subangstrom precise fabrication of individual and coupled SNAP microresonators having the effective radius variation of several nanometers. Our results pave the way to a novel ultraprecise SNAP fabrication technology based on the femtosecond laser inscription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inscription of low insertion loss and negligibly polarization dependent fiber Bragg gratings inscribed using a femtosecond laser system is reported. Insertion losses were <0.4dB/20mm and polarization wavelength shift of <5pm, with transmission changes <0.1dB. © 2010 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present work was to study the morphology and structure of the nanoparticles produced by femtosecond laser ablation of fused silica. Ultrashort laser pulses of 1030 nm wavelength and 550 fs duration were tightly focused by a high numerical aperture microscope objective at the surface of fused silica samples while scanning the sample in relation to the stationary laser beam. Laser tracks were created with pulse energies in the range 5-100 mu J, resulting in ablation debris of different morphologies. The debris were examined by scanning and transmission electron microscopy for their morphology and crystal structure in relation to the incident laser pulse energy. Ejected particles with sizes ranging from a few nanometers to a few microns were found. Their morphologies can be broadly classified into three categories: very fine round nanoparticles with diameters lower than 20 nm, nanoparticles with intermediate sizes between 50 and 200 nm, and big irregular particles with typical size between 0.5 and 1.5 mu m. The fine nanoparticles of the first category are predominantly observed at higher pulse energies and tend to aggregate to form web-like and arborescent-like structures. The nanoparticles with intermediate sizes are observed for all pulse energies used and may appear isolated or aggregated in clusters. Finally, the larger irregular particles of the third category are observed for all energies and appear normally isolated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. Results: The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. Conclusion: This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and demonstrate a switchable dual-wavelength erbium-doped fibre ring laser. Competition between the lasing wavelengths in erbium-doped fibre laser at room temperature is suppressed by incorporating a two-channel fibre Bragg grating (TC-FBG), which consists of two highly localized sub-gratings fabricated by femtosecond laser in single mode fibre. Wavelengths and polarization states of the lasing lines are selected by the TC-FBG. Laser output can be switched between single- and dual-wavelength operations by simply adjusting the polarization controller. Stable dual-wavelength output is verified at room temperature with a power fluctuation less than 0.27 dB, and wavelength fluctuation less than 0.004 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study on the interactions of high intensity (similar to 10(16) W/cm(2)) femtosecond laser pulses with rare gas clusters in a dense jet is performed. Energy absorption by Ar and Xe clusters is measured and it can be as high as 90%. Very energetic ions produced in the laser interaction with a dense cluster jet are detected by time-of-flight spectrometry and the maximum ion energy of Xe is up to 1.3 MeV. The average ion energies are found to increase with increasing cluster size and get saturated gradually. The average ion energies also show a strong directionality and the average ion energy in the direction parallel to the laser polarization vector is 40% higher than that perpendicular to it. The findings are discussed in terms of a model of charge-dependent ion acceleration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250 kHz. For a linearly polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was promoted. The period of self-organization structures is about 180 nm. The grating orientation is adjusted by the laser polarization direction. A long range Bragg-like grating is formed by moving the sample at a speed of 10 mu m/s. For a circularly polarized laser beam, uniform spherical nanoparticles were formed as a result of Coulomb explosion during the interaction of near-infrared laser with ZnO crystal.