905 resultados para feeding and defecation patterns
Resumo:
In order to assess the contribution of the thermogenic effect of feeding and muscular activity to total energy expenditure, nine premature infants were studied for 2 consecutive days during which time repeated measurements of energy expenditure by indirect calorimetry were performed throughout the day, combined with a visual activity score based on body movement. The infants were growing at 16.6 +/- 4.0 g/kg/day (mean +/- SD) and received 110 +/- 8 kcal/kg/day metabolizable energy (milk formula) and 522 +/- 40 mgN/kg/day. Their total energy expenditure was 68 +/- 4 kcal/kg/day indicating that 41 +/- 7 kcal/kg/day was retained for growth. Based on the combination of energy + N balances it was estimated that 80% of the weight gain was fat-free tissue and 20% was fat tissue. The rate of energy expenditure measured minute-by-minute was significantly and linearly correlated with the activity score in both the premeal (r = 0.75;p less than 0.001) and the postmeal periods (r = 0.74; p less than 0.001) with no difference in the regression slope, but with a significant difference in intercept. In preset feeding schedules the latter allowed an estimation of the thermogenic effect without the confounding effect of activity. This was found to be 3.1 +/- 1.8% when expressed as a percentage of metabolizable energy intake. However when the "classical" approach was used as a comparison (integration of extra energy expenditure induced by the meal), the thermogenic effect was found to be greater, i.e. 9.5 +/- 3.8% of the meal's metabolizable energy, due to the superimposed effect of physical activity in the postprandial state.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.
Resumo:
Abstract: Plants cannot run away to escape attacking herbivores, but they defend themselves by producing anti-digestive proteins and toxic compounds (for example glucosinolates). The first goal of this thesis was to study changes in gene expression after insect attack using microarrays. The responses of Arabidopsis thaliana to feeding by the specialist Pieris rapae and the generalist Spodoptera liffora is were compared. We found that the transcript profiles after feeding by the two chewing insects were remarkably similar, although the generalist induced a slightly stronger response. The second goal was to evaluate the implication of the four signals jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA) in the control of insect-regulated gene expression. Using signaling mutants, we observed that JA was the predominant signal and that ABA modulated defense gene expression. In contrast, SA and ET appeared to control slightly gene expression, but only after feeding by S. litforalis. The third goal was to establish whether plant responses are really effective against insects. In accordance with the transcript profile, both insects were affected by the JA-dependent defenses, as they performed better on the JA-insensitive mutant. S. littoralis also performed better on ABA-deficient mutants, providing evidence for the role of ABA in defense against insects. When testing indole or aliphatic glucosinolate deficient mutants, we found that they were also more susceptible to insect feeding, providing some of the first genetic evidence for the defensive role of glucosinolates in planta. Finally, a glutathione-deficient mutant, pad2-1, was also more susceptible to insect feeding and we could attribute this phenotype to a lowered accumulation of the major indole glucosinolate. In this thesis, we provide a comprehensive list of insect-regulated genes, including many transcription factors that constitute interesting candidate genes for the further study of insect-induced expression changes. Understanding how the plant responses to insects are regulated will provide tools for a better management of insect pest in the field. Résumé: Les plantes ne peuvent s'échapper pour fuir les insectes qui les attaquent, mais elles se défendent en produisant des protéines anti-digestives et des composés toxiques (par exemple des glucosinolates). Le premier but de cette thèse était d'étudier les changements de l'expression génétique lors d'attaque par des insectes en utilisant des puces à ADN. Nous avons comparé la réponse d'Arabidopsis thaliana à deux espèces d'insectes avec des habitudes alimentaires différentes : le spécialiste Pieris rapae et le généraliste Spodoptera littoralis. Nous avons trouvé que les profils de transcription après l'attaque par les deux insectes sont remarquablement similaires, bien que le généraliste induise une réponse légèrement plus forte. Le deuxième but était de déterminer l'implication de quatre signaux dans le contrôle de la réponse :l'acide jasmonique (JA), l'acide salicylique (SA), l'éthylène (ET), et l'acide abscissique (ABA). En utilisant de mutants de signalisation, nous avons montré que l'acide jasmonique était le signal prédominant et que l'acide abscissique modulait l'expression génétique. D'autre part, l'acide salicylique et l'éthylène contrôlent à un degré moindre l'expression génétique, mais seulement après l'attaque par S. littoralís. Le troisième but était d'établir si les réponses des plantes sont efficaces contre les insectes. En accord avec le profil de transcription, les deux espèces d'insectes se sont mieux développées sur un mutant insensible au JA, indiquant que les défenses contrôlées par ce signal sont cruciales pour la plante. De plus, les larves de S. littorales se sont mieux développées sur des mutants déficients en ABA, ce qui fournit une preuve du rôle de l'acide abscissique dans la défense contre les insectes. En testant des mutants déficients en glucosinolates de type indole ou aliphatique, nous avons trouvé qu'ils étaient plus sensibles aux insectes, démontrant ainsi le rôle défensif des glucosinolates in planta. Finalement, le mutant déficient en glutathion pad2-1 était aussi plus sensible à l'attaque des insectes, et nous avons pu attribuer ce phénotype à une plus faible augmentation d'un indole glucosinolate dans ce mutant. Dans cette thèse, nous avons mis en évidence un nombre important de gènes contrôlés par les insectes, comprenant de nombreux facteurs de transcription qui constituent des candidats intéressants pour`étudier plus en détail les changements d'expression génétique induits par les insectes. Une meilleure compréhension de la réponse des plantes contre l'attaque des insectes devrait nous permettre de développer de nouvelles stratégies pour mieux gérer les ravageurs des cultures.
Resumo:
Transcript patterns elicited in response to attack reveal, at the molecular level, how plants respond to aggressors. These patterns are fashioned both by inflicted physical damage as well as by biological components displayed or released by the attacker. Different types of attacking organisms might therefore be expected to elicit different transcription programs in the host. Using a large-scale DNA microarray, we characterized gene expression in damaged as well as in distal Arabidopsis thaliana leaves in response to the specialist insect, Pieris rapae. More than 100 insect-responsive genes potentially involved in defense were identified, including genes involved in pathogenesis, indole glucosinolate metabolism, detoxification and cell survival, and signal transduction. Of these 114 genes, 111 were induced in Pieris feeding, and only three were repressed. Expression patterns in distal leaves were markedly similar to those of local leaves. Analysis of wild-type and jasmonate mutant plants, coupled with jasmonate treatment, showed that between 67 and 84% of Pieris-regulated gene expression was controlled, totally or in part, by the jasmonate pathway. This was correlated with increased larval performance on the coronatine insensitive1 glabrous1 (coi1-1 gl1) mutant. Independent mutations in COI1 and GL1 led to a faster larval weight gain, but the gl1 mutation had relatively little effect on the expression of the insect-responsive genes examined. Finally, we compared transcript patterns in Arabidopis in response to larvae of the specialist P. rapae and to a generalist insect, Spodoptera littoralis. Surprisingly, given the complex nature of insect salivary components and reported differences between species, almost identical transcript profiles were observed. This study also provides a robustly characterized gene set for the further investigation of plant-insect interaction.
Resumo:
Feeding of the different developmental stages of Calanipeda aquaedulcis on natural particles (bacterio-, phyto- and microzooplankton) was measured in a Mediterranean salt marsh (Empordà wetlands, NE Iberian Peninsula). Bottle incubations were performed in the field both in autumn and spring. The results showed differences in the diet of the different developmental stages due to both prey type and size. In general, the size of the ingested prey increased with increasing size of the C. aquaedulcis stage. While C. aquaedulcis adults had high ingestion rates and selection coefficients for large prey (micro- and nanoplankton), nauplii preferentially consumed smaller prey items (picoplankton). Copepodites showed the widest prey size range, including pico-, nano- and microplankton. Nevertheless, the lower size limit for particle capture was similar for all stages, i.e. between 1.7 and 2.1 μm. Omnivory was observed in all stages of C. aquaedulcis. Heterotrophic prey (picoplankton, dinoflagellates and ciliates) were the most ingested items. The ability to partition the available food among the different developmental stages could represent an advantage in times of ood scarcity because it may reduce intraspecific competition. This may explain how C. aquaedulcis is able to predominate in the zooplankton community for several weeks during spring and summer ven in situations of low food availability
Resumo:
The objective of this study was to identify gliadin band patterns and the extent of genetic diversity in durum wheat genotypes from Northwestern Iran and the Republic of Azerbaijan. Gliadins from 46 landraces and four cultivars were evaluated through acid PAGE analyses. Sixty-six polymorphic bands and 81 patterns were identified. Twenty-four different motility bands and 22 patterns were found in the ω gliadin region with 14 polymorph bands and 20 patterns for α and γ gliadins, and 14 bands and 19 different patterns for β gliadins. The combination of these patterns generated 38 and 39 combinations for Gli-1 and Gli-2 loci, respectively. The genetic diversity index (H) was higher for α gliadins (0.924), followed by ω and γ gliadins (0.899 and 0.878, respectively), and for β gliadin patterns (0.866). Extensive polymorphism (H = 0.875) was observed in four gliadin pattern regions, with higher genetic diversity in the Iranian landraces than in the Azerbaijani ones. Each genotype had special identifying patterns in the gliadin acid PAGE analysis, and cluster analysis based on Jaccard's similarity coefficients formed six groups. Gliadin has a simple, repeatable and economic analysis, and can be used in genetic studies
Resumo:
Purpose: To describe (1) the clinical profiles and the patterns of use of long-acting injectable (LAI) antipsychotics in patients with schizophrenia at risk of nonadherence with oral antipsychotics, and in those who started treatment with LAI antipsychotics, (2) health care resource utilization and associated costs. Patients and methods: A total of 597 outpatients with schizophrenia at risk of nonadherence, according to the psychiatrist's clinical judgment, were recruited at 59 centers in a noninterventional prospective observational study of 1-year follow-up when their treatment was modified. In a post hoc analysis, the profiles of patients starting LAI or continuing with oral antipsychotics were described, and descriptive analyses of treatments, health resource utilization, and direct costs were performed in those who started an LAI antipsychotic. Results: Therapy modifications involved the antipsychotic medications in 84.8% of patients, mostly because of insufficient efficacy of prior regimen. Ninety-two (15.4%) patients started an LAI antipsychotic at recruitment. Of these, only 13 (14.1%) were prescribed with first-generation antipsychotics. During 1 year, 16.3% of patients who started and 14.9% of patients who did not start an LAI antipsychotic at recruitment relapsed, contrasting with the 20.9% who had been hospitalized only within the prior 6 months. After 1 year, 74.3% of patients who started an LAI antipsychotic continued concomitant treatment with oral antipsychotics. The mean (median) total direct health care cost per patient per month during the study year among the patients starting any LAI antipsychotic at baseline was 1,407 ( 897.7). Medication costs (including oral and LAI antipsychotics and concomitant medication) represented almost 44%, whereas nonmedication costs accounted for more than 55% of the mean total direct health care costs. Conclusion: LAI antipsychotics were infrequently prescribed in spite of a psychiatrist-perceived risk of nonadherence to oral antipsychotics. Mean medication costs were lower than nonmedication costs.
Resumo:
Anthropogenic disturbance of wildlife is of growing conservation concern, but we lack comprehensive approaches of its multiple negative effects. We investigated several effects of disturbance by winter outdoor sports on free-ranging alpine Black Grouse by simultaneously measuring their physiological and behavioral responses. We experimentally flushed radio-tagged Black Grouse from their snow burrows, once a day, during several successive days, and quantified their stress hormone levels (corticosterone metabolites in feces [FCM] collected from individual snow burrows). We also measured feeding time allocation (activity budgets reconstructed from radio-emitted signals) in response to anthropogenic disturbance. Finally, we estimated the related extra energy expenditure that may be incurred: based on activity budgets, energy expenditure was modeled from measures of metabolism obtained from captive birds subjected to different ambient temperatures. The pattern of FCM excretion indicated the existence of a funneling effect as predicted by the allostatic theory of stress: initial stress hormone concentrations showed a wide inter-individual variation, which decreased during experimental flushing. Individuals with low initial pre-flushing FCM values augmented their concentration, while individuals with high initial FCM values lowered it. Experimental disturbance resulted in an extension of feeding duration during the following evening foraging bout, confirming the prediction that Black Grouse must compensate for the extra energy expenditure elicited by human disturbance. Birds with low initial baseline FCM concentrations were those that spent more time foraging. These FCM excretion and foraging patterns suggest that birds with high initial FCM concentrations might have been experiencing a situation of allostatic overload. The energetic model provides quantitative estimates of extra energy expenditure. A longer exposure to ambient temperatures outside the shelter of snow burrows, following disturbance, could increase the daily energy expenditure by >10%, depending principally on ambient temperature and duration of exposure. This study confirms the predictions of allostatic theory and, to the best of our knowledge, constitutes the first demonstration of a funneling effect. It further establishes that winter recreation activities incur costly allostatic behavioral and energetic adjustments, which call for the creation of winter refuge areas together with the implementation of visitor-steering measures for sensitive wildlife.
Resumo:
To test if the relationship between knee kinetics during walking and regional patterns of cartilage thickness is influenced by disease severity we tested the following hypotheses in a cross-sectional study of medial compartment osteoarthritis (OA) subjects: (1) the peak knee flexion (KFM) and adduction moments (KAM) during walking are associated with regional cartilage thickness and medial-to-lateral cartilage thickness ratios, and (2) the associations between knee moments and cartilage thickness data are dependent on disease severity. Seventy individuals with medial compartment knee OA were studied. Gait analysis was used to determine the knee moments and cartilage thickness was measured from magnetic resonance imaging. Multiple linear regression analyses tested for associations between cartilage thickness and knee kinetics. Medial cartilage thickness and medial-to-lateral cartilage thickness ratios were lower in subjects with greater KAM for specific regions of the femoral condyle and tibial plateau with no associations for KFM in patients of all disease severities. When separated by severity, the association between KAM and cartilage thickness was found only in patients with more severe OA, and KFM was significantly associated with cartilage thickness only for the less severe OA subjects for specific tibial plateau regions. The results support the idea that the KAM is larger in patients with more severe disease and the KFM has greater influence early in the disease process, which may lessen as pain increases with disease severity. Each component influences different regions of cartilage. Thus the relative contributions of both KAM and KFM should be considered when evaluating gait mechanics and the influence of any intervention for knee OA.
Resumo:
Fire is a major agent involved in landscape transformation and an indirect cause of changes in species composition. Responses to fire may vary greatly depending on life histories and functional traits of species. We have examined the taxonomic and functional responses to fire of eight taxonomic animal groups displaying a gradient of dietary and mobility patterns: Gastropoda, Heteroptera, Formicidae, Coleoptera, Araneae, Orthoptera, Reptilia and Aves. The fieldwork was conducted in a Mediterranean protected area on 3 sites (one unburnt and two burnt with different postfire management practices) with five replicates per site. We collected information from 4606 specimens from 274 animal species. Similarity in species composition and abundance between areas was measured by the Bray-Curtis index and ANOSIM, and comparisons between animal and plant responses by Mantel tests. We analyze whether groups with the highest percentage of omnivorous species, these species being more generalist in their dietary habits, show weak responses to fire (i.e. more similarity between burnt and unburnt areas), and independent responses to changes in vegetation. We also explore how mobility, i.e. dispersal ability, influences responses to fire. Our results demonstrate that differences in species composition and abundance between burnt and unburnt areas differed among groups. We found a tendency towards presenting lower differences between areas for groups with higher percentages of omnivorous species. Moreover, taxa with a higher percentage of omnivorous species had significantly more independent responses of changes in vegetation. High- (e.g. Aves) and low-mobility (e.g. Gastropoda) groups had the strongest responses to fire (higher R scores of the ANOSIM); however, we failed to find a significant general pattern with all the groups according to their mobility. Our results partially support the idea that functional traits underlie the response of organisms to environmental changes caused by fire.
Resumo:
In birds, parents adjust their feeding behaviour according to breeding duties, which ultimately may lead to seasonal adjustments in nutritional physiology and hematology over the breeding season. Although avian physiology has been widely investigated in captivity, few studies have integrated individual changes in feeding and physiological ecology throughout the breeding season in wild birds. To study relationships between feeding ecology and nutritional ecophysiology in Cory"s shearwater Calonectris diomedea, we weighed and took blood samples from 28 males and 19 females during the pre-laying, egg-laying, incubation, hatching and chick-rearing periods of the breeding season. In addition, we fitted 6 birds with geolocators to track their foraging movements throughout the reproductive period. Thus, we examined individual changes in (1) nutritional condition (biochemistry metabolites); (2) oxygen carrying capacity (hematology); and (3) feeding areas and foraging effort (stable isotopes and foraging movements). Geolocators revealed a latitudinal shift in main feeding areas towards more southern and more neritic waters throughout the breeding season, which is consistent with the steady increase in δ13C signatures in the blood. Geolocators also showed a decrease in foraging effort from egg-laying to hatching, reflecting the activity decrease associated with incubation duties. Plasma metabolites, body mass and oxygen carrying capacity were associated with temporal changes in nutritional state and foraging effort in relation to recovery after migration, egg formation, fasting shifts during incubation and chick provisioning. This study shows that combining physiological and ecological approaches can help us understand the influence of breeding duties on feeding ecology and nutritional physiology in wild birds.
Resumo:
In order to identify genes expressed in the pistil that may have a role in the reproduction process, we have established an expressed sequence tags project to randomly sequence clones from a Nicotiana tabacum stigma/style cDNA library. A cDNA clone (MTL-8) showing high sequence similarity to genes encoding glycine-rich RNA-binding proteins was chosen for further characterization. Based on the extensive identity of MTL-8 to the RGP-1a sequence of N. sylvestris, a primer was defined to extend the 5' sequence of MTL-8 by RT-PCR from stigma/style RNAs. The amplification product was sequenced and it was confirmed that MTL-8 corresponds to an mRNA encoding a glycine-rich RNA-binding protein. Two transcripts of different sizes and expression patterns were identified when the MTL-8 cDNA insert was used as a probe in RNA blots. The largest is 1,100 nucleotides (nt) long and markedly predominant in ovaries. The smaller transcript, with 600 nt, is ubiquitous to the vegetative and reproductive organs analyzed (roots, stems, leaves, sepals, petals, stamens, stigmas/styles and ovaries). Plants submitted to stress (wounding, virus infection and ethylene treatment) presented an increased level of the 600-nt transcript in leaves, especially after tobacco necrosis virus infection. In contrast, the level of the 1,100-nt transcript seems to be unaffected by the stress conditions tested. Results of Southern blot experiments have suggested that MTL-8 is present in one or two copies in the tobacco genome. Our results suggest that the shorter transcript is related to stress while the larger one is a flower predominant and nonstress-inducible messenger.
Resumo:
The objective of this study was to examine hepatitis B virus (HBV) subgenotypes and mutations in enhancer II, basal core promoter, and precore regions of HBV in relation to risks of liver cirrhosis (LC) and hepatocellular carcinoma (HCC) in Southeast China. A case-control study was performed, including chronic hepatitis B (CHB; n=125), LC (n=120), and HCC (n=136). HBV was genotyped by multiplex polymerase chain reaction and subgenotyped by restriction fragment length polymorphism. HBV mutations were measured by DNA sequencing. HBV genotype C (68.2%) predominated and genotype B (30.2%) was the second most common. Of these, C2 (67.5%) was the most prevalent subgenotype, and B2 (30.2%) ranked second. Thirteen mutations with a frequency >5% were detected. Seven mutation patterns (C1653T, G1719T, G1730C, T1753C, A1762T, G1764A, and G1799C) were associated with C2, and four patterns (C1810T, A1846T, G1862T, and G1896A) were associated with B2. Six patterns (C1653T, G1730C, T1753C, A1762T, G1764A, and G1799C) were obviously associated with LC, and 10 patterns (C1653T, G1730C, T1753C, A1762T, G1764A, G1799C, C1810T, A1846T, G1862T, and G1896A) were significantly associated with HCC compared with CHB. Four patterns (C1810T, A1846T, G1862T, and G1896A) were significantly associated with HCC compared with LC. Multivariate regression analyses showed that HBV subgenotype C2 and C2-associated mutation patterns (C1653T, T1753C, A1762T, and G1764A) were independent risk factors for LC when CHB was the control, and that B2-associated mutation patterns (C1810T, A1846T, G1862T, and G1896A) were independent risk factors for HCC when LC was the control.
Resumo:
One component of successful parenting is related to efficiency in foraging behaviour. The relationships among chick feeding, the size and type of food package, and length of parental foraging trips has not been well studied in seabirds. In addition, relatively few data have been collected on the activities of seabirds when foraging away from the nest site. The objectives of this study were: (1) to contrast productivity, feeding rate, and attendance patterns of individuals carrying a novel transmitter with a control group of birds; (2) to use radio-telemetry to assess the variability in foraging locations within and between individual male Common Terns; (3) to determine the seasonal variation in chick diet; (4) to determine for each transmittered bird, the relationships among the foraging patterns, parental behaviour, and seasonal reproductive success. The study took place over two years (1990-91) on a concrete breakwater 1 km offshore on Lake Erie near Port Colbome, Ontario. Ten pairs of terns in 1990 and 12 pairs in 1991 were radio-tracked by boat or car during the chick rearing stage. Concurrent behavioural observations documented the time each sex spent foraging or at the nest. The frequency and prey species composition of feeds to chicks were also recorded. The transmitters had negligible effects on the feeding frequency and brood attendance patterns of transmitter carrying birds. Peak nesting transmittered birds in 1990 and 1991 exhibited some inter-individual variability in foraging locations, however intraindividual variability was low. Birds foraged primarily to the west and northwest of the colony. Late nesters exhibited greater inter-individual variability, however intra-individual variability remained low for most birds. Neither group demonstrated sufficient variability to support the regular use of this colony as an "information centre". Individual transmittered birds had unique and predictable foraging patterns, and corresponding differences in feeding frequencies and brood attendance patterns, yet productivity was essentially equal between nests due to the impact and importance of stochastic events. Individuals that were recaptured in 1991 exhibited very similar foraging patterns to 1990, suggesting littie variability between years. Conservation of foraging patterns between years may have potential implications for mate choice decisions in future breeding seasons. Prey species delivered to chicks differed between morning and evening for peak and late nesters in 1990, but not 1991. Peak nesters in 1990 fed significantiy more Rainbow Smelt fOsmerus mordM) than Emerald Shiner (Notropis atherinoidesV this trend was reversed for late nesters who also fed large numbers of unidentified larval fish. No significant differences were found in 1991. Seasonal changes in prey species delivered to chicks is believed to be attributable to the temperature tolerances of the smelt and shiners, and the presence of large schools of larval fish during the late nesting season.
Resumo:
Objective: Overuse injuries in violinists are a problem that has been primarily analyzed through the use of questionnaires. Simultaneous 3D motion analysis and EMG to measure muscle activity has been suggested as a quantitative technique to explore this problem by identifying movement patterns and muscular demands which may predispose violinists to overuse injuries. This multi-disciplinary analysis technique has, so far, had limited use in the music world. The purpose of this study was to use it to characterize the demands of a violin bowing task. Subjects: Twelve injury-free violinists volunteered for the study. The subjects were assigned to a novice or expert group based on playing experience, as determined by questionnaire. Design and Settings: Muscle activity and movement patterns were assessed while violinists played five bowing cycles (one bowing cycle = one down-bow + one up-bow) on each string (G, D, A, E), at a pulse of 4 beats per bow and 100 beats per minute. Measurements: An upper extremity model created using coordinate data from markers placed on the right acromion process, lateral epicondyle of the humerus and ulnar styloid was used to determine minimum and maximum joint angles, ranges of motion (ROM) and angular velocities at the shoulder and elbow of the bowing arm. Muscle activity in right anterior deltoid, biceps brachii and triceps brachii was assessed during maximal voluntary contractions (MVC) and during the playing task. Data were analysed for significant differences across the strings and between experience groups. Results: Elbow flexion/extension ROM was similar across strings for both groups. Shoulder flexion/extension ROM increaslarger for the experts. Angular velocity changes mirrored changes in ROM. Deltoid was the most active of the muscles assessed (20% MVC) and displayed a pattern of constant activation to maintain shoulder abduction. Biceps and triceps were less active (4 - 12% MVC) and showed a more periodic 'on and off pattern. Novices' muscle activity was higher in all cases. Experts' muscle activity showed a consistent pattern across strings, whereas the novices were more irregular. The agonist-antagonist roles of biceps and triceps during the bowing motion were clearly defined in the expert group, but not as apparent in the novice group. Conclusions: Bowing movement appears to be controlled by the shoulder rather than the elbow as shoulder ROM changed across strings while elbow ROM remained the same. Shoulder injuries are probably due to repetition as the muscle activity required for the movement is small. Experts require a smaller amount of muscle activity to perform the movement, possibly due to more efficient muscle activation patterns as a result of practice. This quantitative multidisciplinary approach to analysing violinists' movements can contribute to fuller understanding of both playing demands and injury mechanisms .