900 resultados para excess post-exercise oxygen consumption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (15-30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VOax). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (90% VOax). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE. © 2013 Cláudio de Oliveira Assumpção et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date little is known about the reliability of peak oxygen consumption (VO2pEAK) in incremental metronome paced step tests (1ST) and the reliability of on-kinetics VO2 has never been studied. We aimed to study the reliability of both tests. Eleven healthy subjects performed two ISTs until exhaustion. On two different days two duplicate 4 min constant metronome paced step tests (CST) were performed. VO2PEAK, mean response time (MRT) and phase II time constant (tau) were tested for reproducibility using the paired t-tests, in addition to the limits of agreement (LOA) and within subject coefficient of variation (COV). With a 95% LOA of 0.38 to 0.26 L min(-1), -8.7 to 9.1 s and -9.9 to 10.5 s they exhibit a COV of 3%, 4.5% and 6.9% for VO2PEAK, MRT and tau respectively. ST are sufficiently reliable for maximal and submaximal aerobic power assessments in healthy subjects and new studies of oxygen uptake kinetics in selected patient groups are warranted. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To investigate the effects of a supervised exercise training program on health parameters, physical capacity, and health-related quality of life in patients with mild and chronic juvenile dermatomyositis (DM). Methods. This was a prospective longitudinal study following 10 children with mild and chronic juvenile DM (disease duration >1 year). The exercise program consisted of twice-a-week aerobic and resistance training. At baseline and after the 12-week intervention, we assessed muscle strength and function, aerobic conditioning, body composition, juvenile DM scores, and health-related quality of life. Results. Child self-report and parent proxy-report Pediatric Quality of Life Inventory scores were improved after the intervention (-40.3%; P = 0.001 and -48.2%; P = 0.049, respectively). Importantly, after exercise, the Disease Activity Score was reduced (-26.9%; P = 0.026) and the Childhood Muscle Assessment Scale was improved (+2.5%; P = 0.009), whereas the Manual Muscle Test presented a trend toward statistical significance (+2.2%; P = 0.081). The peak oxygen consumption and time-to-exhaustion were increased by 13.3% (P = 0.001) and 18.2% (P = 0.003), respectively, whereas resting heart rate was decreased by 14.7% (P = 0.006), indicating important cardiovascular adaptations to the exercise program. Upper and lower extremity muscle strength and muscle function were also significantly improved after the exercise training (P < 0.05). Both the whole-body and the lumbar spine bone mineral apparent density were significantly increased after training (1.44%; P = 0.044 and 2.85%; P = 0.008, respectively). Conclusion. We showed for the first time that a 12-week supervised exercise program is safe and can improve muscle strength and function, aerobic conditioning, bone mass, disease activity, and health-related quality of life in patients with active and nonactive mild and chronic juvenile DM with near normal physical function and quality of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine the prevalence of exercise-induced bronchoconstriction among elite long-distance runners in Brazil and whether there is a difference in the training loads among athletes with and without exercise-induced bronchoconstriction. Methods: This was a cross-sectional study involving elite long-distance runners with neither current asthma symptoms nor a diagnosis of exercise-induced bronchoconstriction. All of the participants underwent eucapnic voluntary hyperpnea challenge and maximal cardiopulmonary exercise tests, as well as completing questionnaires regarding asthma symptoms and physical activity, in order to monitor their weekly training load. Results: Among the 86 male athletes recruited, participation in the study was agreed to by 20, of whom 5 (25%) were subsequently diagnosed with exercise-induced bronchoconstriction. There were no differences between the athletes with and without exercise-induced bronchoconstriction regarding anthropometric characteristics, peak oxygen consumption, baseline pulmonary function values, or reported asthma symptoms. The weekly training load was significantly lower among those with exercise-induced bronchoconstriction than among those without. Conclusions: In this sample of long-distance runners in Brazil, the prevalence of exercise-induced bronchoconstriction was high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Exercise training (ET) has been used as a nonpharmacological strategy for treatment of diabetes and myocardial infarction (MI) separately. We evaluated the effects ET on functional and molecular left ventricular (LV) parameters as well as on autonomic function and mortality in diabetics after MI. Methods and Results: Male Wistar rats were divided into control (C), sedentary-diabetic infarcted (SDI), and trained-diabetic infarcted (TDI) groups. MI was induced after 15 days of streptozotocin-diabetes induction. Seven days after MI, the trained group underwent ET protocol (90 days, 50-70% maximal oxygen consumption-VO(2)max). LV function was evaluated noninvasively and invasively; baroreflex sensitivity, pulse interval variability, cardiac output, tissue blood flows, VEGF mRNA and protein, HIF1-alpha mRNA, and Ca2+ handling proteins were measured. MI area was reduced in TDI (21 +/- 4%) compared with SDI (38 +/- 4%). ET induced improvement in cardiac function, hemodynamics, and tissue blood flows. These changes were probable consequences of a better expression of Ca2+ handling proteins, increased VEGF mRNA and protein expression as well as improvement in autonomic function, that resulted in reduction of mortality in TDI (33%) compared with SDI (68%) animals. Conclusions: ET reduced cardiac and peripheral dysfunction and preserved autonomic control in diabetic infarcted rats. Consequently, these changes resulted in improved VO(2)max and survival after MI. (J Cardiac Fail 2012; 18:734-744)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of this study was to evaluate the following: 1) the effects of continuous exercise training and interval exercise training on the end-tidal carbon dioxide pressure (PETCO2) response during a graded exercise test in patients with coronary artery disease; and 2) the effects of exercise training modalities on the association between PETCO2 at the ventilatory anaerobic threshold (VAT) and indicators of ventilatory efficiency and cardiorespiratory fitness in patients with coronary artery disease. METHODS: Thirty-seven patients (59.7 +/- 1.7 years) with coronary artery disease were randomly divided into two groups: continuous exercise training (n = 20) and interval exercise training (n = 17). All patients performed a graded exercise test with respiratory gas analysis before and after three months of the exercise training program to determine the VAT, respiratory compensation point (RCP) and peak oxygen consumption. RESULTS: After the interventions, both groups exhibited increased cardiorespiratory fitness. Indeed, the continuous exercise and interval exercise training groups demonstrated increases in both ventilatory efficiency and PETCO2 values at VAT, RCP, and peak of exercise. Significant associations were observed in both groups: 1) continuous exercise training (PETCO(2)VAT and cardiorespiratory fitness r = 0.49; PETCO(2)VAT and ventilatory efficiency r = -0.80) and 2) interval exercise training (PETCO(2)VAT and cardiorespiratory fitness r = 0.39; PETCO(2)VAT and ventilatory efficiency r = -0.45). CONCLUSIONS: Both exercise training modalities showed similar increases in PETCO2 levels during a graded exercise test in patients with coronary artery disease, which may be associated with an improvement in ventilatory efficiency and cardiorespiratory fitness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] 1. The present study examined whether the blood flow to exercising muscles becomes reduced when cardiac output and systemic vascular conductance decline with dehydration during prolonged exercise in the heat. A secondary aim was to determine whether the upward drift in oxygen consumption (VO2) during prolonged exercise is confined to the active muscles. 2. Seven euhydrated, endurance-trained cyclists performed two bicycle exercise trials in the heat (35 C; 40-50 % relative humidity; 61 +/- 2 % of maximal VO2), separated by 1 week. During the first trial (dehydration trial, DE), they bicycled until volitional exhaustion (135 +/- 4 min, mean +/- s.e.m.), while developing progressive dehydration and hyperthermia (3.9 +/- 0.3 % body weight loss; 39.7 +/- 0.2 C oesophageal temperature, Toes). In the second trial (control trial), they bicycled for the same period of time while maintaining euhydration by ingesting fluids and stabilizing Toes at 38.2 +/- 0.1 C after 30 min exercise. 3. In both trials, cardiac output, leg blood flow (LBF), vascular conductance and VO2 were similar after 20 min exercise. During the 20 min-exhaustion period of DE, cardiac output, LBF and systemic vascular conductance declined significantly (8-14 %; P < 0.05) yet muscle vascular conductance was unaltered. In contrast, during the same period of control, all these cardiovascular variables tended to increase. After 135 +/- 4 min of DE, the 2.0 +/- 0.6 l min-1 lower blood flow to the exercising legs accounted for approximately two-thirds of the reduction in cardiac output. Blood flow to the skin also declined markedly as forearm blood flow was 39 +/- 8 % (P < 0.05) lower in DE vs. control after 135 +/- 4 min. 4. In both trials, whole body VO2 and leg VO2 increased in parallel and were similar throughout exercise. The reduced leg blood flow in DE was accompanied by an even greater increase in femoral arterial-venous O2 (a-vO2) difference. 5. It is concluded that blood flow to the exercising muscles declines significantly with dehydration, due to a lowering in perfusion pressure and systemic blood flow rather than increased vasoconstriction. Furthermore, the progressive increase in oxygen consumption during exercise is confined to the exercising skeletal muscles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Exertional oscillatory ventilation (EOV) in heart failure may potentiate the negative effects of low cardiac output and high ventilation on exercise performance. We hypothesized that the presence of EOV might, per se, influence exercise capacity as evaluated by maximal cardiopulmonary exercise test. METHODS AND RESULTS: We identified 78 severe chronic heart failure patient pairs with and without EOV. Patients were matched for sex, age and peak oxygen consumption (VO2). Patients with EOV showed, for the same peak VO2, a lower workload (WL) at peak (DeltaWatts=5.8+/-23.0, P=0.027), a less efficient ventilation (higher VE/VCO2 slope: 38.0+/-8.3 vs. 32.8+/-6.3, P<0.001), lower peak exercise tidal volume (1.49+/-0.36 L vs. 1.61+/-0.46 L, P=0.015) and higher peak respiratory rate (34+/-7/min vs. 31+/-6/min, P=0.002). In 33 patients, EOV disappeared during exercise, whereas in 45 patients EOV persisted. Fifty percent of EOV disappearing patients had an increase in the VO2/WL relationship after EOV regression, consistent with a more efficient oxygen delivery to muscles. No cardiopulmonary exercise test parameter was associated with the different behaviour of VO2/WL. CONCLUSION: The presence of EOV negatively influences exercise performance of chronic heart failure patients likely because of an increased cost of breathing. EOV disappearance during exercise is associated with a more efficient oxygen delivery in several cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Adult patients with repaired tetralogy of Fallot (rTOF) often have diminished exercise capacity. The primary objective of this study was to examine whether abnormalities of biventricular function play a role in exercise limitation in patients with rTOF. METHODS: This was a retrospective review of 99 adult patients with rTOF. Right ventricular (RV) and left ventricular (LV) function were assessed echocardiographically using the myocardial performance index (MPI). Maximal oxygen consumption (VO(2) Max) was measured during a level 1 cardiopulmonary exercise test. RESULTS: The mean age of the cohort was 34 +/- 11 years (50% females). Although most of the patients reported good functional capacity, the peak Vo(2)max was decreased at 22 +/- 6 mL/kg per minute (66% +/- 13% predicted Vo(2)max for age and sex). The mean RV and LV MPI were 0.30 +/- 0.07 and 0.42 +/- 0.09, respectively. In the multivariate model, higher RV MPI (P = .04) and LV MPI (P = .005) values, representing impaired ventricular function, were associated with diminished Vo(2)max. There was a significant correlation between the RV and LV MPI (r = 0.54, P = .001). CONCLUSIONS: Impairment of RV and LV function, as measured by MPI, is associated with diminished exercise capacity in patients with repaired tetralogy of Fallot. Furthermore, there is a linear relationship between the RV and LV function suggesting that ventricular interactions are contributing to the limited exercise capacity in this group of patients. Strategies aimed at preserving biventricular function or improving adverse ventricular interactions could help to improve functional capacity in these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE We explored whether altered expression of factors tuning mitochondrial metabolism contributes to muscular adaptations with endurance training in the condition of lowered ambient oxygen concentration (hypoxia) and whether these adaptations relate to oxygen transfer as reflected by subsarcolemmal mitochondria and oxygen metabolism in muscle. METHODS Male volunteers completed 30 bicycle exercise sessions in normoxia or normobaric hypoxia (4,000 m above sea level) at 65% of the respective peak aerobic power output. Myoglobin content, basal oxygen consumption, and re-oxygenation rates upon reperfusion after 8 min of arterial occlusion were measured in vastus muscles by magnetic resonance spectroscopy. Biopsies from vastus lateralis muscle, collected pre and post a single exercise bout, and training, were assessed for levels of transcripts and proteins being associated with mitochondrial metabolism. RESULTS Hypoxia specifically lowered the training-induced expression of markers of respiratory complex II and IV (i.e. SDHA and isoform 1 of COX-4; COX4I1) and preserved fibre cross-sectional area. Concomitantly, trends (p < 0.10) were found for a hypoxia-specific reduction in the basal oxygen consumption rate, and improvements in oxygen repletion, and aerobic performance in hypoxia. Repeated exercise in hypoxia promoted the biogenesis of subsarcolemmal mitochondria and this was co-related to expression of isoform 2 of COX-4 with higher oxygen affinity after single exercise, de-oxygenation time and myoglobin content (r ≥ 0.75). Conversely, expression in COX4I1 with training correlated negatively with changes of subsarcolemmal mitochondria (r < -0.82). CONCLUSION Hypoxia-modulated adjustments of aerobic performance with repeated muscle work are reflected by expressional adaptations within the respiratory chain and modified muscle oxygen metabolism.