985 resultados para energy plant
Resumo:
Objective To study the role of energy derived from sugar (both table sugar and sugar added to processed foods) in the total energy content of food purchases in Brazil.Design Food purchase data were collected during a national household budget survey carried out between June 2002 and July 2003 on a probabilistic sample representative of all households in the country. The amount of food purchased in this 12-month period was transformed into energy and energy from sugar using food composition tables. Multiple linear regression models were used to study the association between amount of energy from sugar and total energy content of food purchases, controlling for sociodemographic variables and potential interactions between these variables and sugar purchases.Results There was a positive and significant association between energy from sugar and total household energy purchases. A 1 kJ increase in sugar purchase corresponded to a 3·637 kJ increase in total energy. In the absence of expenditure on meals outside the home, i.e. when household food purchases tend to approximate actual food consumption by household members, sugar purchase of 1926·35 kJ/d (the 90th percentile of the distribution of sugar purchases in Brazil) was associated, depending on income strata, with total energy purchase over 40\201360 per cent of the recommended daily value for energy intake in Brazil.Conclusions The present results corroborate the recommendations of the WHO and the Brazilian Ministry of Health regarding limiting the consumption of sugar
Resumo:
A febre amarela (FA) é doença infecciosa aguda de origem viral transmitida por mosquitos. No ciclo silvestre, o vírus é mantido por meio da infecção de macacos e da transmissão transovariana nos vetores. A vigilância sobre populações de primatas não humanos torna-se necessária para detectar a circulação viral, quando ainda está restrito a epizootias, e para determinar sua presença em regiões indenes ou de transição para a doença. Padronizou-se a técnica ELISA (Enzyme Linked Immunosorbent Assay) para determinar a prevalência de anticorpos da classe IgG contra o vírus da FA em soros de bugios (Alouatta caraya) da região do reservatório da Usina Hidrelétrica de Porto Primavera, SP. Foram testados soros de 570 macacos sendo que nenhuma amostra mostrou-se reativa para a presença de anticorpos contra o vírus da FA. Os resultados são coerentes com a epidemiologia da FA na região. Mesmo sendo área de transição, não se conhece, até o momento, ocorrência de epizootia ou surto de FA em humanos e investigações entomológicas não apontaram a presença de vetores para esta arbovirose. A técnica mostrou-se sensível, rápida e útil à vigilância epidemiológica como instrumento de busca ativa permitindo desencadear ações preventivas, como vacinação, antes mesmo do surgimento de epizootias
Resumo:
Equatorial podzols are soils characterized by thick sandy horizons overlying more clayey horizons. Organic matter produced in the topsoil is transferred in depth through the sandy horizons and accumulate at the transition, at a depth varying from 1 to more than 3 m, forming deep horizons rich in organic matter (Bh horizons). Although they cover great surfaces in the equatorial zone, these soils are still poorly known. Studying podzols from Amazonia, we found out that the deep Bh horizons in poorly drained podzol areas have a thickness higher than 1m and store unexpected amounts of carbon. The average for the studied area was 66.7 +/- 5.8 kgCm(-2) for the deep Bh and 86.8 +/- 7.1 kgCm(-2) for the whole profile. Extrapolating to the podzol areas of the whole Amazonian basin has been possible thanks to digital maps, giving an order of magnitude around 13.6 +/- 1.1 PgC, at least 12.3 PgC higher than previous estimates. This assessment should be refined by additional investigations, not only in Amazonia but in all equatorial areas where podzols have been identified. Because of the lack of knowledge on the quality and behaviour of the podzol organic matter, the question of the feedback between the climate and the equatorial podzol carbon cycle is open.
Resumo:
Purpose: This study investigated the energy system contributions of judo athletes to the Special Judo Fitness Test (SJFT). Methods: Fourteen male judo athletes performed the SJFT, which comprised three periods of judo activity (A = 15 s, B and C = 30 s) interspersed with 10 s rest intervals. During this test, one athlete threw two others positioned 6 m from each other using the ippon-seoi-nage technique. The fractions of the aerobic, anaerobic alactic and anaerobic lactic systems were calculated based on oxygen uptake, the fast component of excess postexercise oxygen uptake, and changes in net blood lactate, respectively. The contribution of the three energy systems was compared using a repeated measures analysis of variance and Bonferroni's multiple comparisons test. Compound symmetry, or sphericity, was determined by Mauchly's test. A level of significance of 5% (P < .05) was adopted in all analyses. Results: The alactic energy system presented a higher (F = 20.9; P < .001; power observed = 1.0) contribution (86.8 +/- 23.6 kJ; 42.3 +/- 5.9%) during the test when compared with both aerobic (57.1 +/- 11.3 kJ; 28.2 +/- 2.9%) and lactic (58.9 +/- 12.1 kJ; 29.5 +/- 6.2%) energy systems (P < .001 for both comparisons). Conclusions: The higher alactic contribution seems to be a consequence of the high-intensity efforts performed during the test, and its intermittent nature. Thus, when using the SJFT, coaches are evaluating mainly their athletes' anaerobic alactic system, which can be considered to be the most predominant system contributing to the actions (techniques) performed in the match.
Resumo:
Objective: Although some scientific information on electronic body protectors in taekwondo is available, no research has been done to assess the impact of kicks in a competitive situation. The purpose of this study, then, was to assess the energy absorbed by these protectors from kicks performed in an actual taekwondo competition. Methods: Subjects consisted of junior (14-17 years) and senior (>= 18 years) male taekwondo-in, who participated in an open tournament. Data on the energy imparted by valid kicks in Joules (1) were collected from a public visual electronic monitor. Results: Energy was higher for the seniors: 264.31 +/- 56.63 J versus 224.38 +/- 48.23 J for the juniors (eta(2) = 0.121). The seniors scored lower in percent impact but the effect was trivial: 123.46 +/- 24.77% versus 136.70 +/- 26.33% (eta(2) = 0.087). Conclusions: The difference between senior and junior taekwondo-in in absolute energy generated was small, while the difference in relative energy impact was trivial in favour of the junior taekwondo athletes.
Resumo:
Biomass Refinery is a sequential of eleven thermochemical processes and one biological process with two initial basic treatments: prehydrolysis for lignocellulosics and low temperature conversion for biomass with medium-to-high content of lipids and proteins. The other ten processes are: effluent treatment plant, furfural plant, biodiesel plant, cellulignin dryer, calcination, fluidized bed boiler, authotermal reforming of cellulignin for syngas production, combined cycle of two-stroke low-speed engine or syngas turbine with fluidized bed boiler heat recovery, GTL technologies and ethanol from cellulose, prehydrolysate and syngas. Any kind of biomass such as wood, agricultural residues, municipal solid waste, seeds, cakes, sludges, excrements and used tires can be processed at the Biomass Refinery. Twelve basic products are generated such as cellulignin, animal feed, electric energy, fuels (ethanol, crude oil, biodiesel, char), petrochemical substitutes, some materials (ash, gypsum, fertilizers, silica, carbon black) and hydrogen. The technology is clean with recovery of energy and reuse of water, acid and effluents. Based on a holistic integration of various disciplines Biomass Refinery maximizes the simultaneous production of food, electric energy, liquid fuels and chemical products and some materials, achieving a competitive position with conventional and fossil fuel technologies, as well as payment capacity for biomass production. Biomass Refinery has a technical economical capability to complement the depletion of the conventional petroleum sources and to capture its GHGs resulting a biomass + petroleum ""green"" combination.
Resumo:
This paper investigates the concept of piezoaeroelasticity for energy harvesting. The focus is placed on mathematical modeling and experimental validations of the problem of generating electricity at the flutter boundary of a piezoaeroelastic airfoil. An electrical power output of 10.7 mW is delivered to a 100 k load at the linear flutter speed of 9.30 m/s (which is 5.1% larger than the short-circuit flutter speed). The effect of piezoelectric power generation on the linear flutter speed is also discussed and a useful consequence of having nonlinearities in the system is addressed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3427405]
Resumo:
Background: The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results: We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. Conclusions: The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk.
Resumo:
The pathogenic fungus Fusarium graminearum is an ongoing threat to agriculture, causing losses in grain yield and quality in diverse crops. Substantial progress has been made in the identification of genes involved in the suppression of phytopathogens by antagonistic microorganisms; however, limited information regarding responses of plant pathogens to these biocontrol agents is available. Gene expression analysis was used to identify differentially expressed transcripts of the fungal plant pathogen F. graminearum under antagonistic effect of the bacterium Pantoea agglomerans. A macroarray was constructed, using 1014 transcripts from an F. graminearum cDNA library. Probes consisted of the cDNA of F. graminearum grown in the presence and in the absence of P. agglomerans. Twenty-nine genes were either up (19) or down (10) regulated during interaction with the antagonist bacterium. Genes encoding proteins associated with fungal defense and/or virulence or with nutritional and oxidative stress responses were induced. The repressed genes coded for a zinc finger protein associated with cell division, proteins containing cellular signaling domains, respiratory chain proteins, and chaperone-type proteins. These data give molecular and biochemical evidence of response of F. graminearum to an antagonist and could help develop effective biocontrol procedures for pathogenic plant fungi.
Resumo:
Premise of the study: We developed a new set of microsatellite markers for studying the genome of the janaguba tree, Himatanthus drasticus (Mart.) Plumel, which is used in folk medicine in northeastern Brazil. These novel markers are being used to evaluate the effect of harvesting on the genetic structure and diversity of natural populations of this species. Methods and Results: Microsatellite loci were isolated from an enriched H. drasticus genomic library. Nine primer pairs successfully amplified polymorphic microsatellite regions, with an average of 8.5 alleles per locus. The average values of observed and expected heterozygosity were 0.456 and 0.601, respectively. Conclusions: The microsatellite markers described here are valuable tools for population genetics studies of H. drasticus. The majority of the primers also amplified sequences in the genome of another species of the same genus. This new set of markers may be useful in designing a genetic conservation strategy and a sustainable management plan for the species.
Resumo:
We analytically calculate the time-averaged electromagnetic energy stored inside a nondispersive magnetic isotropic cylinder that is obliquely irradiated by an electromagnetic plane wave. An expression for the optical-absorption efficiency in terms of the magnetic internal coefficients is also obtained. In the low absorption limit, we derive a relation between the normalized internal energy and the optical-absorption efficiency that is not affected by the magnetism and the incidence angle. This relation, indeed, seems to be independent of the shape of the scatterer. This universal aspect of the internal energy is connected to the transport velocity and consequently to the diffusion coefficient in the multiple scattering regime. Magnetism favors high internal energy for low size parameter cylinders, which leads to a low diffusion coefficient for electromagnetic propagation in 2D random media. (C) 2010 Optical Society of America
Resumo:
Consider that an incident plane wave is scattered by a homogeneous and isotropic magnetic sphere of finite radius. We determine, by means of the rigorous Mie theory, an exact expression for the time-averaged electromagnetic energy within this particle. For magnetic scatterers, we find that the value of the average internal energy in the resonance picks is much larger than the one associated with a scatterer with the same nonmagnetic medium properties. This result is valid even, and especially, for low size parameter values. Expressions for the contributions of the radial and angular field components to the internal energy are determined. For the analytical study of the weak absorption regime, we derive an exact expression for the absorption cross section in terms of the magnetic Mie internal coefficients. We stress that, although the electromagnetic scattering by particles is a well-documented topic, almost no attention has been devoted to magnetic scatterers. Our aim is to provide some new analytical results, which can be used for magnetic particles, and emphasize the unusual properties of the magnetic scatters, which could be important in some applications. (C) 2010 Optical Society of America
Resumo:
We present measurements of net charge fluctuations in Au+Au collisions at s(NN)=19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at s(NN)=62.4 and 200 GeV, and p+p collisions at s=200 GeV using the dynamical net charge fluctuations measure nu(+-,dyn). We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N(ch) scaling but display approximate 1/N(part) scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.
Resumo:
Background: Schizophrenia is likely to be a consequence of DNA alterations that, together with environmental factors, will lead to protein expression differences and the ultimate establishment of the illness. The superior temporal gyrus is implicated in schizophrenia and executes functions such as the processing of speech, language skills and sound processing. Methods: We performed an individual comparative proteome analysis using two-dimensional gel electrophoresis of 9 schizophrenia and 6 healthy control patients' left posterior superior temporal gyrus (Wernicke's area - BA22p) identifying by mass spectrometry several protein expression alterations that could be related to the disease. Results: Our analysis revealed 11 downregulated and 14 upregulated proteins, most of them related to energy metabolism. Whereas many of the identified proteins have been previously implicated in schizophrenia, such as fructose-bisphosphate aldolase C, creatine kinase and neuron-specific enolase, new putative disease markers were also identified such as dihydrolipoyl dehydrogenase, tropomyosin 3, breast cancer metastasis-suppressor 1, heterogeneous nuclear ribonucleoproteins C1/C2 and phosphate carrier protein, mitochondrial precursor. Besides, the differential expression of peroxiredoxin 6 (PRDX6) and glial fibrillary acidic protein (GFAP) were confirmed by western blot in schizophrenia prefrontal cortex. Conclusion: Our data supports a dysregulation of energy metabolism in schizophrenia as well as suggests new markers that may contribute to a better understanding of this complex disease.