987 resultados para electric field domains
Resumo:
The difference between the Mossbauer parameters for EuBa2Cu3O7-x with dc electric current and those without dc electric current at 83 K has been observed. The change in isomer shift, electric quadrupole splitting and the asymmetry parameter of the electric field gradient at the Eu-151 nucleus may be caused by the movement of a mass of conduction electrons along a certain direction in the EuBa2Cu3O7-x crystal with a layered structure.
Resumo:
In this paper, the electric dichroism of cetylpyridinium bromide (CPB) has been found and studied by spectroelectrochemistry with a long optical path length thin-layer cell (LOPTLC) for the first time. The CPB molecule with a long carbon chain and a polar pyridinium ring is anisotropic in molecular configuration or in polarizability. In the electric field of a thin-layer cell, the CPB molecule reorientates along the direction of the electric field and exhibits electric dichroism, which results in the increase of absorbance of CPB in the UV-vis range. By use of in situ measurement of spectroelectrochemistry, the order parameters of long molecular axis (S = 0.845) and short molecular axis (D = 0.155) and the angle between the long axis direction of the CPB molecule and the direction normal to the electrode surface (theta = 18-degrees 44') have been determined. These data were used to describe the state of arrangement of the molecules in the solution. The reorientation of CPB molecules is the result of the interaction between the anisotropic molecules and electric field. The effects of the concentration of CPB and of the applied electric field on the electric dichroism have been investigated.
Resumo:
We study a resistively shunted semiconductor superlattice subject to a high-frequency electric field. Using a balance equation approach that incorporates the influence of the electric circuit, we determine numerically a range of amplitude and frequency of the ac field for which a dc bias and current are generated spontaneously and show that this region is likely accessible to current experiments. Our simulations reveal that the Bloch frequency corresponding to the spontaneous dc bias is approximately an integer multiple of the ac field frequency.
Resumo:
Chronic diabetic ulcers affect approximately 15% of patients with diabetes worldwide. Currently, applied electric fields are being investigated as a reliable and cost-effective treatment. This in vitro study aimed to determine the effects of a constant and spatially variable electric field on three factors: endothelial cell migration, proliferation, and angiogenic gene expression. Results for a constant electric field of 0.01 V demonstrated that migration at short time points increased 20-fold and proliferation at long time points increased by a factor of 1.40. Results for a spatially variable electric field did not increase directional migration, but increased proliferation by a factor of 1.39 and by a factor of 1.55 after application of 1.00 V and 0.01 V, respectively. Both constant and spatially variable applied fields increased angiogenic gene expression. Future research that explores a narrower range of intensity levels may more clearly identify the optimal design specifications of a spatially variable electric field.
Resumo:
The acceleration of multi-MeV protons from the rear surface of thin solid foils irradiated by an intense (similar to 10(18) W/cm(2)) and short (similar to 1.5 ps) laser pulse has been investigated using transverse proton probing. The structure of the electric field driving the expansion of the proton beam has been resolved with high spatial and temporal resolution. The main features of the experimental observations, namely, an initial intense sheath field and a late time field peaking at the beam front, are consistent with the results from particle-in-cell and fluid simulations of thin plasma expansion into a vacuum.
Resumo:
This paper shows that penetration of the applied electric field into the electrodes of a ferroelectric thin film capacitor produces both an interfacial capacitance and an effective mechanism for electron tunneling. The model predictions are compared with experimental results on Au-BST-SrRuO3 capacitors of varying thicknesses, and the agreement is excellent.
Resumo:
Reduced-size polarized (ZmPolX) basis sets are developed for the second-row atoms X = Si, P, S, and Cl. The generation of these basis sets follows from a simple physical model of the polarization effect of the external electric field which leads to highly compact polarization functions to be added to the chosen initial basis set. The performance of the ZmPolX sets has been investigated in calculations of molecular dipole moments and polarizabilities. Only a small deterioration of the quality of the calculated molecular electric properties has been found. Simultaneously the size of the present reduced-size ZmPolX basis sets is about one-third smaller than that of the usual polarized (PolX) sets. This reduction considerably widens the range of applications of the ZmPolX sets in calculations of molecular dipole moments, dipole polarizabilities, and related properties.
Resumo:
We report on the electric-field-generated effects in the nematic phase of a twin mesogen formed of bent-core and calamitic units, aligned homeotropically in the initial ground state and examined beyond the dielectric inversion point. The bend-Freedericksz (BF) state occurring at the primary bifurcation and containing a network of umbilics is metastable; we focus here on the degenerate planar (DP) configuration that establishes itself at the expense of the BF state in the course of an anchoring transition. In the DP regime, normal rolls, broad domains, and chevrons (both defect-mediated and defect-free types) form at various linear defect-sites, in different regions of the frequency-voltage plane. A significant novel aspect common to all these patterned states is the sustained propagative instability, which does not seem explicable on the basis of known driving mechanisms.
Resumo:
Over 60 years ago, Charles Kittel predicted that quadrant domains should spontaneously form in small ferromagnetic platelets. He expected that the direction of magnetization within each quadrant should lie parallel to the platelet surface, minimizing demagnetizing fields, and that magnetic moments should be configured into an overall closed loop, or flux-closure arrangement. Although now a ubiquitous observation in ferromagnets, obvious flux-closure patterns have been somewhat elusive in ferroelectric materials. This is despite the analogous behaviour between these two ferroic subgroups and the recent prediction of dipole closure states by atomistic simulations research. Here we show Piezoresponse Force Microscopy images of mesoscopic dipole closure patterns in free-standing, single-crystal lamellae of BaTiO3. Formation of these patterns is a dynamical process resulting from system relaxation after the BaTiO3 has been poled with a uniform electric field. The flux-closure states are composed of shape conserving 90° stripe domains which minimize disclination stresses.
Resumo:
As part of an ongoing programme to evaluate the extent to which external morphology alters domain wall mobility in ferroelectrics, the electrical switching characteristics of single-crystal BaTiO3 nanorods and thin film plates have been measured and compared. It was found that ferroelectric nanorods were more readily switched than thin plates; increasing the shape constraint therefore appears to enhance switchability. This observation is broadly consistent with previous work, in which local notches patterned along the length of nanorods enhanced switching (McMillen et al 2010 Appl. Phys. Lett. 96 042904), while antinotches had the opposite effect (McQuaid et al 2010 Nano Lett. 10 3566). In this prior work, local enhancement and denudation of the electric field was expected at the notch and antinotch sites, respectively, and this was thought to be the reason for the differences in switching behaviour observed. However, for the simple nanorods and plates investigated here, no differences in the electric field distributions are expected. To rationalise the functional measurements, domain development during switching was imaged directly by piezoresponse force microscopy. A two-stage process was identified, in which narrow needle-like reverse domains initially form across the entire interelectrode gap and then subsequently coarsen through domain wall propagation perpendicular to the applied electric field. To be consistent with the electrical switching data, we suggest that the initial formation of needle domains occurs more readily in the nanorods than in the plates.
Resumo:
Supersolitons are a recent addition to the literature on large-amplitude solitary waves in multispecies plasmas. They are distinguished from the usual solitons by their associated electric field profiles which are inherently distinct from traditional bipolar structures. In this paper, dust-ion-acoustic modes in a dusty plasma with stationary negative dust, cold fluid protons, and nonthermal electrons are investigated through a Sagdeev pseudopotential approach to see where supersolitons fit between ranges of ordinary solitons and double layers, as supersolitons always have finite amplitudes. They therefore cannot be described by reductive perturbation treatments, which rely on a weak amplitude assumption. A systematic methodology and discussion is given to distinguish the existence domains in solitary wave speed and amplitude for the different solitons, supersolitons and double layers, in terms of compositional parameters for the plasma model under consideration. © 2013 American Physical Society.
Resumo:
Superficially, electrostatic potential profiles of supersolitons look like those of traditional solitons. However, their electric field profiles are markedly different, having additional extrema on the wings of the standard bipolar structure. This new concept was recently pointed out in the literature for a plasma model with five species. Here, it is shown that electrostatic supersolitons are not an artefact of exotic, complicated plasma models, but can exist even in three-species plasmas and are likely to occur in space plasmas. Further, a methodology is given to delineate their existence domains in a systematic fashion by determining the specific limiting factors. © 2013 American Institute of Physics.
Resumo:
We simulate and discuss the local electric-field enhancement in a system of a dielectric nanoparticle placed very near to a metallic substrate. We use finite-element numerical simulations in order to understand the field-enhancement mechanism in this dielectric NP-on-mirror system. Under appropriate excitation conditions, the gap between the particle and the substrate becomes a "hot spot", i.e., a region of intense electromagnetic field. We also show how the optical properties of the dielectric NP placed on a metallic substrate affect the plasmonic field enhancement in the nanogap and characterize the confinement in the gap. Our study helps to understand and design systems with dielectric NPs on metallic substrates which can be equally as effective for SERS, fluorescence, and nonlinear phenomena as conventional all plasmonic structures.
Resumo:
We test current numerical implementations of laser-matter interactions by comparison with exact analytical results. Focusing on photon emission processes, it is found that the numerics accurately reproduce analytical emission spectra in all considered regimes, except for the harmonic structures often singled out as the most significant high-intensity (multiphoton) effects. We find that this discrepancy originates in the use of the locally constant field approximation.
Resumo:
Fabricating Ge and Si integrated structures with nanoscale accuracy is a challenging pursuit essential for novel advances in electronics and photonics. While several scanning probe-based techniques have been proposed, no current technique offers control of nanostructure size, shape, placement, and chemical composition. To this end, atomic force microscope direct write uses a high electric field (> 109 V m-1) to create nanoscale features as fast as 1 cm s-1 by reacting a liquid precursor with a biased AFM tip. In this work, I present the first results on fabricating inorganic nanostructures via AFM direct write. Using diphenylgermane (DPG) and diphenylsilane (DPS), carbon-free germanium and silicon nanostructures (SIMS, x-ray PEEM) are fabricated. For this chemistry, I propose a model that involves electron capture and precursor fragmentation under the high electric field. To verify this model, experimental data and simulations are presented. High field chemistry for DPG and DPS has also been demonstrated for both sequential deposition and the creation of nanoscale heterostuctures, in addition to microscale deposition using a flexible stamp approach. This high field chemistry approach to the deposition of organometallic precursors could offer a low-cost, high throughput alternative for future optical, electronic, and photovoltaic applications.