855 resultados para early design stages
Resumo:
The importance of non-technical factors in the design and implementation of information systems has been increasingly recognised by both researchers and practitioners, and recent literature highlights the need for new tools and techniques with an organisational, rather than technical, focus. The gap between what is technically possible and what is generally practised, is particularly wide in the sales and marketing field. This research describes the design and implementation of a decision support system (DSS) for marketing planning and control in a small, but complex company and examines the nature of the difficulties encountered. An intermediary with functional, rather than technical, expertise is used as a strategy for overcoming these by taking control of the whole of the systems design and implementation cycle. Given the practical nature of the research, an action research approach is adopted with the researcher undertaking this role. This approach provides a detailed case study of what actually happens during the DSS development cycle, allowing the influence of organisational factors to be captured. The findings of the research show how the main focus of the intermediary's role needs to be adapted over the systems development cycle; from coordination and liaison in the pre-design and design stages, to systems champion during the first part of the implementation stage, and finally to catalyst to ensure that the DSS is integrated into the decision-making process. Two practical marketing exercises are undertaken which illustrate the nature of the gap between the provision of information and its use. The lack of a formal approach to planning and control is shown to have a significant effect on the way the DSS is used and the role of the intermediary is extended successfully to accommodate this factor. This leads to the conclusion that for the DSS to play a fully effective role, small firms may need to introduce more structure into their marketing planning, and that the role of the intermediary, or Information Coordinator, should include the responsibility for introducing new techniques and ideas to aid with this.
Resumo:
Type 1 cannabinoid receptors (CB1R) have a well established role in modulating GABAergic signalling with the central nervous system, and are thought to be the only type present at GABAergic presynaptic terminals. In the medial entorhinal cortex (mEC), some cortical layers show high levels of ongoing GABAergic signalling (namely layer II) while others show relatively low levels (layer V). Using whole-cell patch clamp techniques, I have, for the first time, demonstrated the presence of functional CB1R in both deep and superficial layers of the mEC. Furthermore, using a range of highly specific ligands for both CB1R and CB2R, I present strong pharmacological evidence for CB2Rs being present in both deep and superficial layers of the mEC in the adult rat brain. In brain slices taken at earlier points in CNS development (P8-12), I have shown that while both CB1R and CB2R specific ligands do modulate GABAergic signalling at early developmental stages, antagonists/ inverse agonists and full agonists have similar effects, and serve only to reduce GABAergic signalling. These data suggest that the full cannabinoid signalling mechanisms at this early stage in synaptogenesis are not yet in place. During these whole-cell studies, I have developed and refined a novel recording technique, using an amantidine derivative (IEM1460) which allows inhibitory postsynaptic currents to be recorded under conditions in which glutamate receptors are not blocked and network activity remains high. Finally I have shown that bath applied CB1 and CB2 receptor antagonists/ inverse agonists are capable of modulating kainic acid induced persistent oscillatory activity in mEC. Inverse agonists suppressed oscillatory activity in the superficial layers of the mEC while it was enhanced in the deeper layers. It seems likely that cannabinoid receptors modulate the inhibitory neuronal activity that underlies network oscillations.
Resumo:
Software architecture is the abstract design of a software system. It plays a key role as a bridge between requirements and implementation, and is a blueprint for development. The architecture represents a set of early design decisions that are crucial to a system. Mistakes in those decisions are very costly if they remain undetected until the system is implemented and deployed. This is where formal specification and analysis fits in. Formal specification makes sure that an architecture design is represented in a rigorous and unambiguous way. Furthermore, a formally specified model allows the use of different analysis techniques for verifying the correctness of those crucial design decisions. ^ This dissertation presented a framework, called SAM, for formal specification and analysis of software architectures. In terms of specification, formalisms and mechanisms were identified and chosen to specify software architecture based on different analysis needs. Formalisms for specifying properties were also explored, especially in the case of non-functional properties. In terms of analysis, the dissertation explored both the verification of functional properties and the evaluation of non-functional properties of software architecture. For the verification of functional property, methodologies were presented on how to apply existing model checking techniques on a SAM model. For the evaluation of non-functional properties, the dissertation first showed how to incorporate stochastic information into a SAM model, and then explained how to translate the model to existing tools and conducts the analysis using those tools. ^ To alleviate the analysis work, we also provided a tool to automatically translate a SAM model for model checking. All the techniques and methods described in the dissertation were illustrated by examples or case studies, which also served a purpose of advocating the use of formal methods in practice. ^
Resumo:
A high frequency physical phase variable electric machine model was developed using FE analysis. The model was implemented in a machine drive environment with hardware-in-the-loop. The novelty of the proposed model is that it is derived based on the actual geometrical and other physical information of the motor, considering each individual turn in the winding. This is the first attempt to develop such a model to obtain high frequency machine parameters without resorting to expensive experimental procedures currently in use. The model was used in a dynamic simulation environment to predict inverter-motor interaction. This includes motor terminal overvoltage, current spikes, as well as switching effects. In addition, a complete drive model was developed for electromagnetic interference (EMI) analysis and evaluation. This consists of the lumped parameter models of different system components, such as cable, inverter, and motor. The lumped parameter models enable faster simulations. The results obtained were verified by experimental measurements and excellent agreements were obtained. A change in the winding arrangement and its influence on the motor high frequency behavior has also been investigated. This was shown to have a little effect on the parameter values and in the motor high frequency behavior for equal number of turns. An accurate prediction of overvoltage and EMI in the design stages of the drive system would reduce the time required for the design modifications as well as for the evaluation of EMC compliance issues. The model can be utilized in the design optimization and insulation selection for motors. Use of this procedure could prove economical, as it would help designers develop and test new motor designs for the evaluation of operational impacts in various motor drive applications.
Resumo:
Eleocharis cellulosa is a dominant macrophyte in Everglades wet prairie communities. The development of the shoot system in the genus has been described as sympodial but with an unusual adnation of the horizontal and vertical shoots. The growth pattern of E. cellulosa was studied from field collected plants and plants grown in the greenhouse. Plants were extracted and measurements of horizontal and vertical shoot were taken. Dissections, paraffin sectioning and SEM's were used to examine shoot structure in early developmental stages. E. cellulosa was transplanted from the field to the greenhouse and different levels of Nitrogen and Phosphorus were added to determine how it responded phenotypically. Dissections and microscopy showed that growth of the vertical shoots of E. cellulosa is sympodial, while growth of the horizontal shoots is mixed, beginning monopodially then transforming to sympodial growth. Additions of nutrients did not have any effect on the morphology of E. cellulosa.
Resumo:
Ocean acidification (OA) is known to affect bivalve early life-stages. We tested responses of blue mussel larvae to a wide range of pH in order to identify their tolerance threshold. Our results confirmed that decreasing seawater pH and decreasing saturation state increases larval mortality rate and the percentage of abnormally developing larvae. Virtually no larvae reared at average pHT 7.16 were able to feed or reach the D-shell stage and their development appeared to be arrested at the trochophore stage. However larvae were capable of reaching the D-shell stage under milder acidification (pHT=7.35, 7.6, 7.85) including in under-saturated seawater with omega Aragonite as low as 0.54±0.01 (mean±s. e. m.), with a tipping point for normal development identified at pHT 7.765. Additionally growth rate of normally developing larvae was not affected by lower pHT despite potential increased energy costs associated with compensatory calcification in response to increased shell dissolution. Overall, our results on OA impacts on mussel larvae suggest an average pHT of 7.16 is beyond their physiological tolerance threshold and indicate a shift in energy allocation towards growth in some individuals revealing potential OA resilience.
Resumo:
Ocean acidification, due to anthropogenic CO2 absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Volcanic CO2 seeps provide opportunities to investigate the effects of ocean acidification on organisms in the wild. To understand the influence of increasing CO2 concentrations on the metabolic rate (oxygen consumption) and the development of ocellated wrasse early life stages, we ran two field experiments, collecting embryos from nesting sites with different partial pressures of CO2 [pCO2; ambient (400 µatm) and high (800-1000 µatm)] and reciprocally transplanting embryos from ambient- to high-CO2 sites for 30 h. Ocellated wrasse offspring brooded in different CO2 conditions had similar responses, but after transplanting portions of nests to the high-CO2 site, embryos from parents that spawned in ambient conditions had higher metabolic rates. Although metabolic phenotypic plasticity may show a positive response to high CO2, it often comes at a cost, in this case as a smaller size at hatching. This can have adverse effects because smaller larvae often exhibit a lower survival in the wild. However, the adverse effects of increased CO2 on metabolism and development did not occur when embryos from the high-CO2 nesting site were exposed to ambient conditions, suggesting that offspring from the high-CO2 nesting site could be resilient to a wider range of pCO2 values than those belonging to the site with present-day pCO2 levels. Our study identifies a crucial need to increase the number of studies dealing with these processes under global change trajectories and to expand these to naturally high-CO2 environments, in order to assess further the adaptive plasticity mechanism that encompasses non-genetic inheritance (epigenetics) through parental exposure and other downstream consequences, such as survival of larvae.
Resumo:
Smart Grids are a new trend of electric power distribution, the future of current systems. These networks are continually being introduced in order to improve the reliability of systems, providing alternatives to energy supply and cost savings. Faced with increasing electric power grids complexity, the energy demand and the introduction of alternative sources to energy generation, all components of system require a fully integration in order to achieve high reliability and availability levels (dependability). The systematization of a Smart Grid from the Fault Tree formalism enable the quantitative evaluation of dependability of a specific scenario. In this work, a methodology for dependability evaluation of Smart Grids is proposed. A study of case is described in order to validate the proposal. With the use of this methodology, it is possible to estimate during the early design phase the reliability, availability of Smart Grid beyond to identify the critical points from the failure and repair distributions of components.
Resumo:
The surface and sub-ice layer habitats and their metazoan fauna were studied on a drifting pack-ice floe in the western Weddell Sea from 29 November 2004 to 1 January 2005 during the "Ice Station POLarstern" (ISPOL). Flooding of the floe occurred at some places, and the establishment of surface layers with a brownish colour due to growing algae was observed at several sampling sites. The average surface-layer temperature, brine salinity and brine volume were -1.4 °C, 25.3 and 54%, respectively. The temperature-salinity relationship in the surface layer was seldom at equilibrium conditions. Chlorophyll a (Chl a) concentrations in the brine varied between 1.0 and 53.5 µg /L. Surface-layer thickness, salinity, Chl a concentration and copepod abundances were generally higher at the edge of the floe than in the inner part. The sympagic copepod species Drescheriella glacialis/racovitzai and Stephos longipes, with abundances ranging between 0 and 3830 ind/L (median: 2 ind/L) and 0 and 1293 ind/L (median: 4 ind/L), respectively, were the dominant members of the surface-layer meiofauna. Their populations consisted mainly of adults and early naupliar stages, which points to an active reproduction of these species within the surface layer. Other taxa found in the surface layer were undetermined turbellarians, the gastropod Tergipes antarcticus, and, for the first time, the ctenophore Callianira antarctica, and the amphipods Eusirus antarcticus and Eusirus tridentatus. During the course of our study, slight melting at the ice underside took place, releasing sympagic organisms to the water column. Chl a concentrations in the sub-ice water layer were very low (0.1-0.5 µg /L), except for 25 December when the Chl a concentration at 0 m depth increased to 2.3 µg /L. The most dominant sympagic copepod species found in the sub-ice layer was Ectinosoma sp., with abundances ranging between 1 and 599 ind/m**3 (median: 25 ind/m**3). Other sympagic copepod species occurring regularly in this habitat were D. glacialis/racovitzai, Diarthrodes cf. lilacinus, Idomene antarctica and S. longipes. All of these sympagic species were generally found in higher abundances at 0 m depth underneath the ice than at 5 m depth, in contrast to pelagic copepod species that occurred more frequently at 5 m depth. Niche separation and probable life-cycle strategies of dominant sympagic metazoans are discussed.
Resumo:
Ocean acidification is predicted to have significant effects on benthic calcifying invertebrates, in particular on their early developmental stages. Echinoderm larvae could be particularly vulnerable to decreased pH, with major consequences for adult populations. The objective of this study was to understand how ocean acidification would affect the initial life stages of the sea urchin Paracentrotus lividus, a common species that is widely distributed in the Mediterranean Sea and the NE Atlantic. The effects of decreased pH (elevated PCO2) were investigated through physiological and molecular analyses on both embryonic and larval stages. Eggs and larvae were reared in Mediterranean seawater at six pH levels, i.e. pHT 8.1, 7.9, 7.7, 7.5, 7.25 and 7.0. Fertilization success, survival, growth and calcification rates were monitored over a 3 day period. The expression of genes coding for key proteins involved in development and biomineralization was also monitored. Paracentrotus lividus appears to be extremely resistant to low pH, with no effect on fertilization success or larval survival. Larval growth was slowed when exposed to low pH but with no direct impact on relative larval morphology or calcification down to pHT 7.25. Consequently, at a given time, larvae exposed to low pH were present at a normal but delayed larval stage. More surprisingly, candidate genes involved in development and biomineralization were upregulated by factors of up to 26 at low pH. Our results revealed plasticity at the gene expression level that allows a normal, but delayed, development under low pH conditions.
Resumo:
Measurement and verification of products and processes during the early design is attracting increasing interest from high value manufacturing industries. Measurement planning is deemed as an effective means to facilitate the integration of the metrology activity into a wider range of production processes. However, the literature reveals that there are very few research efforts in this field, especially regarding large volume metrology. This paper presents a novel approach to accomplish instruments selection, the first stage of measurement planning process, by mapping measurability characteristics between specific measurement assignments and instruments.
Resumo:
Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in killifish, and that locomotor alterations could be observed in early larval stages. Additionally, our study highlights the resistance to behavioral alterations caused by low-level PAH mixture exposure in the adapted killifish population. Furthermore, this is the first longitudinal behavioral study to use killifish, an environmentally important estuarine teleost fish, and this testing framework can be used for future contaminant assessment.
Resumo:
The rapidity of ocean acidification intensifies selection pressure for resilient phenotypes, particularly during sensitive early life stages. The scope for selection is greater in species with greater within-species variation in responses to changing environments, thus enhancing the potential for adaptation. We investigated among-male variation in sperm swimming responses (percent motility and swimming speeds) of the serpulid polychaete Galeolaria caespitosa to near- (delta pH 0.3) and far-future ocean acidification (delta pH 0.5). Responses of sperm swimming to acidification varied significantly among males and were overall negative. Robust sperm swimming behavior under near-future ocean acidification in some males may ameliorate climate change impacts, if traits associated with robustness are heritable, and thereby enhance the potential for adaptation to far-future conditions. Reduced sperm swimming in the majority of male G. caespitosa may decrease their fertilization success in a high CO2 future ocean. Resultant changes in offspring production could affect recruitment success and population fitness downstream.