851 resultados para dorsolateral prefrontal cortex
Resumo:
Estimulação transcraniana por corrente contínua (ETCC) sobre áreas corticais pré-selecionadas, tem aumentado o desempenho físico de diferentes populações. Porém, lacunas persistem no tocante aos mecanismos subjacentes à estes efeitos. Assim, a presente tese objetivou: a) investigar os efeitos da ETCC anódica (aETCC) e placebo (Sham) no córtex motor (CM) de indivíduos saudáveis sobre o desempenho de força máxima; b) comparar os efeitos da ETCC sobre a produção de força máxima e estabilidadade da força durante exercícios máximo e submáximo em sujeitos hemiparéticos e saudáveis; c) investigar o efeito da ETCC sobre a conectividade funcional inter-hemisférica (coerência eletroencefalográfica cEEG) do córtex pré-frontal (CPF), desempenho aeróbio e dispêndio energético (EE) durante e após exercício máximo e submáximo. No 1 estudo, 14 adultos saudáveis executaram 2 sessões de exercício máximo de força (EMF) dos músculos flexores e extensores do joelho dominante (3 séries de 10 rep máximas), precedidos por aETCC ou Sham (2mA; 20 mim). aETCC não foi capaz de aumentar o trabalho total e pico de torque (PT), resistência à fadiga ou atividade eletromiográfica durante o EMF. No 2 estudo, 10 hemiparéticos e 9 sujeitos saudáveis receberam aETCC e Sham no CM. O PT e a estabilidade da força (coeficiente de variação - CV) foram avaliados durante protocolo máximo e submáximo de extensão e flexão unilateral do joelho (1 série de 3 reps a 100% do PT e 2 séries de 10 reps a 50% do PT). Nenhuma diferença no PT foi observada nos dois grupos. Diminuições no CV foram obervadas durante a extensão (~25-35%, P<0.001) e flexão de joelho (~22-33%, P<0.001) após a aETCC comparada com Sham nos hemiparéticos, entretanto, somente o CV na extensão de joelhos diminuiu (~13-27%, P<0.001) nos saudáveis, o que sugere que aETCC pode melhorar o CV, mas não o PT em sujeitos hemiparéticos. No 3 estudo, 9 adultos saudáveis realizaram 2 testes incrementais máximos precedidos por aETCC ou Sham sobre o CPF com as respostas cardiorrespiratórias, percepção de esforço (PSE) e cEEG do CPF sendo monitoradas. O VO2 de pico (42.64.2 vs. 38.23.3 mL.kg.min-1; P=0,02), potência total (252.776.5 vs. 23773.3 W; P=0,05) e tempo de exaustão (531.1140 vs. 486.7115.3 seg; P=0,04) foram maiores após aETCC do que a Sham. Nenhuma diferença foi encontrada para FC e PSE em função da carga de trabalho (P>0,05). A cEEG do CPF aumentou após aETCC vs. repouso (0.700.40 vs. 0.380.05; P=0,001), mas não após Sham vs. repouso (0.360.49 vs. 0.330.50; P=0,06), sugerindo que a aETCC pode retardar a fadiga aumentando a conectividade funcional entre os hemisférios do CPF e desempenho aeróbio durante exercício exaustivo. No 4 estudo, o VO2 e EE foram avaliados em 11 adultos saudáveis antes, durante a aETCC ou Sham no CPF e 30 min após exercício aeróbio submáximo isocalórico (~200kcal). Diferenças não foram observadas no VO2 vs. repouso durante aETCC e Sham (P=0.95 e P=0.85). Porém, a associação entre exercício e aETCC aumentou em ~19% o EE após ao menos, 30 min de recuperação após exercício quando comparada a Sham (P<0,05).
Resumo:
为筛选出与认知、记忆相关的脑部表达基因及基因家族,利用TRIzol试剂从恒河猴大脑前额叶组织抽提总RNA,再用纯化试剂盒从总RNA中成功纯化出mRNA。按照Stratagene公司的cDNASynthesisKit(200401)、ZAP-cDNASynthesisKit(200400)和ZAP-cDNAGigapackⅢGoldCloningKit(200450)三个试剂盒的操作说明,构建了恒河猴大脑前额叶组织的cDNA文库。文库总库容为2·0×106克隆;绝大多数的cDNA插入片段≥0·5kb,平均长度≈1·0kb;cDNA片段与噬菌体载体重组率为97·3%。文库各项指标均达要求,为克隆大脑PFC区表达基因、测定基因编码区序列、揭示具有多种剪切组合模式等提供了可靠资源,也为相关基因表达调控的研究提供了方便。
Resumo:
Repeated daily treatment with the catecholamine-depleting agent, reserpine, dramatically reduced performance on the delayed response task, a test of spatial working memory that depends upon the integrity of the prefrontal cortex. Delayed response performance fell from an average of 27.2/30 trials correct before reserpine treatment to an average of 20.4/30 trials correct after repeated reserpine administration. Injection of the alpha2-adrenergic agonist, clonidine (0.0001-0.05 mg/kg), to chronic reserpine-treated monkeys significantly restored performance on the delayed response task; performance after an optimal dose averaged 27.8/30 trials correct. Clonidine's beneficial effects on delayed response performance were longlasting; monkeys remained improved for more than 24 h after a single clonidine injection. The finding that clonidine is efficacious in reserpinized animals supports the hypothesis that alpha2-adrenergic agonists improve cognitive function through actions at postsynaptic, alpha2-adrenergic receptors on non-adrenergic cells. In contrast to the delayed response task, reserpine had little effect on performance of a visual discrimination task, a reference memory task which does not depend on the prefrontal cortex. These results emphasize the importance of postsynaptic alpha2-adrenergic mechanisms in the regulation of working memory,
Resumo:
Dopamine (DA) D-1 receptor compounds were examined in monkeys for effects on the working memory functions of the prefrontal cortex and on the fine motor abilities of the primary motor cortex. The D-1 antagonist, SCH23390, the partial D-1 agonist, SKF38393, and the full D-1 agonist, dihydrexidine, were characterized in young control monkeys, and in aged monkeys with naturally occurring catecholamine depletion. In addition, SKF38393 was tested in young monkeys experimentally depleted of catecholamines with chronic reserpine treatment. Injections of SCH23390 significantly impaired the memory performance of young control monkeys, but did not impair aged monkeys with presumed catecholamine depletion. Conversely, the partial agonist, SKF38393, improved the depleted monkeys (aged or reserpine-treated) but did not improve young control animals. The full agonist, dihydrexidine, did improve memory performance in young control monkeys, as well as in a subset of aged monkeys. Consistent with D, receptor mechanisms, agonist-induced improvements were blocked by SCH23390. Drug effects on memory performance occurred independently of effects on fine motor performance. These results underscore the importance of DA D-1 mechanisms in cognitive function, and provide functional evidence of DA system degeneration in aged monkeys. Finally, high doses of D-1 agonists impaired memory performance in aged monkeys, suggesting that excessive D-1 stimulation may be deleterious to cognitive function.
Resumo:
With advancing age, monkeys develop deficits in spatial working memory resembling those induced by lesions of the prefrontal cortex (PFC). Aged monkeys also exhibit marked loss of dopamine from the PFC, a transmitter known to be important for proper PFC cognitive function. Previous results suggest that D1 agonist treatment can improve spatial working memory abilities in aged monkeys. However, this research was limited by the use of drugs with either partial agonist actions or significant D2 receptor actions. In our study, the selective dopamine D1 receptor full agonists A77636 and SKF81297 were examined in aged monkeys for effects on the working memory functions of the PFC. Both compounds produced a significant, dose-related effect on delayed response performance without evidence of side effects: low doses improved performance although higher doses impaired or had no effect on performance. Both the improvement and impairment in performance were reversed by pretreatment with the D1 receptor antagonist, SCH23390. These findings are consistent with previous results demonstrating that there is a narrow range of D1 receptor stimulation for optimal PFC cognitive function, and suggest that very low doses of D1 receptor agonists may have cognitive-enhancing actions in the elderly.
Resumo:
Extract of Ginkgo biloba is used to alleviate age-related decline in cognitive function, which may be associated with the loss of catecholamines in the prefrontal cortex. The purpose of this study was to verify whether alpha-2 adrenergic activity is involved in the facilitative effects of extract of Ginkgo biloba on prefrontal cognitive function. Male Wistar rats were trained to reach criterion in the delayed alternation task (0, 25, and 50-s delay intervals). A pilot study found that 3 or 4 mg/kg of yohimbine (intraperitoneal) reduced the choice accuracy of the delayed alternation task in a dose and delay-dependent manner, without influencing motor ability or perseverative behaviour. Acute oral pre-treatment with doses of 50, 100, or 200 mg/kg (but not 25 mg/kg) of extract of Ginkgo biloba prevented the reduction in choice accuracy induced by 4 mg/kg yohimbine. These data suggest that the prefrontal cognition-enhancing effects of extract of Ginkgo biloba are related to its actions on alpha-2-adrenoceptors.
Resumo:
Although prefrontal and hippocampal neurons are critical for spatial working memory, the function of glial cells in spatial working memory remains uncertain. In this study we investigated the function of glial cells in rats' working memory. The glial cell
Resumo:
The role dopamine plays in decision-making has important theoretical, empirical and clinical implications. Here, we examined its precise contribution by exploiting the lesion deficit model afforded by Parkinson's disease. We studied patients in a two-stage reinforcement learning task, while they were ON and OFF dopamine replacement medication. Contrary to expectation, we found that dopaminergic drug state (ON or OFF) did not impact learning. Instead, the critical factor was drug state during the performance phase, with patients ON medication choosing correctly significantly more frequently than those OFF medication. This effect was independent of drug state during initial learning and appears to reflect a facilitation of generalization for learnt information. This inference is bolstered by our observation that neural activity in nucleus accumbens and ventromedial prefrontal cortex, measured during simultaneously acquired functional magnetic resonance imaging, represented learnt stimulus values during performance. This effect was expressed solely during the ON state with activity in these regions correlating with better performance. Our data indicate that dopamine modulation of nucleus accumbens and ventromedial prefrontal cortex exerts a specific effect on choice behaviour distinct from pure learning. The findings are in keeping with the substantial other evidence that certain aspects of learning are unaffected by dopamine lesions or depletion, and that dopamine plays a key role in performance that may be distinct from its role in learning.
Resumo:
People are alarmingly susceptible to manipulations that change both their expectations and experience of the value of goods. Recent studies in behavioral economics suggest such variability reflects more than mere caprice. People commonly judge options and prices in relative terms, rather than absolutely, and display strong sensitivity to exemplar and price anchors. We propose that these findings elucidate important principles about reward processing in the brain. In particular, relative valuation may be a natural consequence of adaptive coding of neuronal firing to optimise sensitivity across large ranges of value. Furthermore, the initial apparent arbitrariness of value may reflect the brains' attempts to optimally integrate diverse sources of value-relevant information in the face of perceived uncertainty. Recent findings in neuroscience support both accounts, and implicate regions in the orbitofrontal cortex, striatum, and ventromedial prefrontal cortex in the construction of value.
Resumo:
Human choices are remarkably susceptible to the manner in which options are presented. This so-called "framing effect" represents a striking violation of standard economic accounts of human rationality, although its underlying neurobiology is not understood. We found that the framing effect was specifically associated with amygdala activity, suggesting a key role for an emotional system in mediating decision biases. Moreover, across individuals, orbital and medial prefrontal cortex activity predicted a reduced susceptibility to the framing effect. This finding highlights the importance of incorporating emotional processes within models of human choice and suggests how the brain may modulate the effect of these biasing influences to approximate rationality.
Resumo:
Decision making in an uncertain environment poses a conflict between the opposing demands of gathering and exploiting information. In a classic illustration of this 'exploration-exploitation' dilemma, a gambler choosing between multiple slot machines balances the desire to select what seems, on the basis of accumulated experience, the richest option, against the desire to choose a less familiar option that might turn out more advantageous (and thereby provide information for improving future decisions). Far from representing idle curiosity, such exploration is often critical for organisms to discover how best to harvest resources such as food and water. In appetitive choice, substantial experimental evidence, underpinned by computational reinforcement learning (RL) theory, indicates that a dopaminergic, striatal and medial prefrontal network mediates learning to exploit. In contrast, although exploration has been well studied from both theoretical and ethological perspectives, its neural substrates are much less clear. Here we show, in a gambling task, that human subjects' choices can be characterized by a computationally well-regarded strategy for addressing the explore/exploit dilemma. Furthermore, using this characterization to classify decisions as exploratory or exploitative, we employ functional magnetic resonance imaging to show that the frontopolar cortex and intraparietal sulcus are preferentially active during exploratory decisions. In contrast, regions of striatum and ventromedial prefrontal cortex exhibit activity characteristic of an involvement in value-based exploitative decision making. The results suggest a model of action selection under uncertainty that involves switching between exploratory and exploitative behavioural modes, and provide a computationally precise characterization of the contribution of key decision-related brain systems to each of these functions.
Resumo:
In contrast to the wealth of data describing the neural mechanisms underlying classical conditioning, we know remarkably little about the mechanisms involved in acquisition of explicit contingency awareness. Subjects variably acquire contingency awareness in classical conditioning paradigms, in which they are able to describe the temporal relationship between a conditioned cue and its outcome. Previous studies have implicated the hippocampus and prefrontal cortex in the acquisition of explicit knowledge, although their specific roles remain unclear. We used functional magnetic resonance imaging to track the trial-by-trial acquisition of explicit knowledge in a concurrent trace and delay conditioning paradigm. We show that activity in bilateral middle frontal gyrus and parahippocampal gyrus correlates with the accuracy of explicit contingency awareness on each trial. In contrast, amygdala activation correlates with conditioned responses indexed by skin conductance responses (SCRs). These results demonstrate that brain regions known to be involved in other aspects of learning and memory also play a specific role, reflecting on each trial the acquisition and representation of contingency awareness.
Resumo:
The ability to volitionally regulate emotions helps to adapt behavior to changing environmental demands and can alleviate subjective distress. We show that a cognitive strategy of detachment attenuates subjective and physiological measures of anticipatory anxiety for pain and reduces reactivity to receipt of pain itself. Using functional magnetic resonance imaging, we locate the potential site and source of this modulation of anticipatory anxiety in the medial prefrontal/anterior cingulate and anterolateral prefrontal cortex, respectively.
Resumo:
The relationship between pain and cognitive function is of theoretical and clinical interest, exemplified by observations that attention-demanding activities reduce pain in chronically afflicted patients. Previous studies have concentrated on phasic pain, which bears little correspondence to clinical pain conditions. Indeed, phasic pain is often associated with differential or opposing effects to tonic pain in behavioral, lesion, and pharmacological studies. To address how cognitive engagement interacts with tonic pain, we assessed the influence of an attention-demanding cognitive task on pain-evoked neural responses in an experimental model of chronic pain, the capsaicin-induced heat hyperalgesia model. Using functional magnetic resonance imaging (fMRI), we show that activity in the orbitofrontal and medial prefrontal cortices, insula, and cerebellum correlates with the intensity of tonic pain. This pain-related activity in medial prefrontal cortex and cerebellum was modulated by the demand level of the cognitive task. Our findings highlight a role for these structures in the integration of motivational and cognitive functions associated with a physiological state of injury. Within the limitations of an experimental model of pain, we suggest that the findings are relevant to understanding both the neurobiology and pathophysiology of chronic pain and its amelioration by cognitive strategies.
Resumo:
The role dopamine plays in decision-making has important theoretical, empirical and clinical implications. Here, we examined its precise contribution by exploiting the lesion deficit model afforded by Parkinson's disease. We studied patients in a two-stage reinforcement learning task, while they were ON and OFF dopamine replacement medication. Contrary to expectation, we found that dopaminergic drug state (ON or OFF) did not impact learning. Instead, the critical factor was drug state during the performance phase, with patients ON medication choosing correctly significantly more frequently than those OFF medication. This effect was independent of drug state during initial learning and appears to reflect a facilitation of generalization for learnt information. This inference is bolstered by our observation that neural activity in nucleus accumbens and ventromedial prefrontal cortex, measured during simultaneously acquired functional magnetic resonance imaging, represented learnt stimulus values during performance. This effect was expressed solely during the ON state with activity in these regions correlating with better performance. Our data indicate that dopamine modulation of nucleus accumbens and ventromedial prefrontal cortex exerts a specific effect on choice behaviour distinct from pure learning. The findings are in keeping with the substantial other evidence that certain aspects of learning are unaffected by dopamine lesions or depletion, and that dopamine plays a key role in performance that may be distinct from its role in learning. © 2012 The Author.