895 resultados para discriminant analysis and cluster analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the effects of sectoral structure on the long run macroeconomic inventory behaviour of national economies. Data on 15 OECD countries are included in the analysis, which is based on correlation and cluster analysis methodologies. The study is part of a long-term research project exploring factors influencing the inventory behaviour of national economies. First, we introduce some basic characteristics of macroeconomic inventory formation in the 15 OECD countries. We argue that our previous results on the existence of specific characteristic features of macroeconomic inventory investment are justified, hence it makes sense to study the factors influencing these features. We then examine the contribution of various sectors to the production of in the countries involved and the relationship between sectoral structure and inventory intensity (annual inventory change/Gross Value Added). We find that the high share of agriculture and manufacturing increases inventory intensity, that the increasing share of services has a negative effect and that the role of construction and trade is not obvious. The relatively low stability of the statistical results warns us to be cautious with our judgements. Further, case-by-case analysis would be required to obtain more solid results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem investigated was negative effects on the ability of a university student to successfully complete a course in religious studies resulting from conflict between the methodologies and objectives of religious studies and the student's system of beliefs. Using Festinger's theory of cognitive dissonance as a theoretical framework, it was hypothesized that completing a course with a high level of success would be negatively affected by (1) failure to accept the methodologies and objectives of religious studies (methodology), (2) holding beliefs about religion that had potential conflicts with the methodologies and objectives (beliefs), (3) extrinsic religiousness, and (4) dogmatism. The causal comparative method was used. The independent variables were measured with four scales employing Likert-type items. An 8-item scale to measure acceptance of the methodologies and objectives of religious studies and a 16-item scale to measure holding of beliefs about religion having potential conflict with the methodologies were developed for this study. These scales together with a 20-item form of Rokeach's Dogmatism Scale and Feagin's 12-item Religious Orientation Scale to measure extrinsic religiousness were administered to 144 undergraduate students enrolled in randomly selected religious studies courses at Florida International University. Level of success was determined by course grade with the 27% of students receiving the highest grades classified as highly successful and the 27% receiving the lowest grades classified as not highly successful. A stepwise discriminant analysis produced a single significant function with methodology and dogmatism as the discriminants. Methodology was the principal discriminating variable. Beliefs and extrinsic religiousness failed to discriminate significantly. It was concluded that failing to accept the methodologies and objectives of religious studies and being highly dogmatic have significant negative effects on a student's success in a religious studies course. Recommendations were made for teaching to diminish these negative effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In community college nursing programs the high rate of attrition was a major concern to faculty and administrators. Since first semester attrition could lead to permanent loss of students and low retention in nursing programs, it was important to identify at-risk students early and develop proactive approaches to assist them to be successful. The goal of nursing programs was to graduate students who were eligible to take the national council licensing examination (RN). This was especially important during a time of critical shortage in the nursing workforce. ^ This study took place at a large, multi-campus community college, and used Tinto's (1975) Student Integration Model of persistence as the framework. A correlational study was conducted to determine whether the independent variables, past academic achievement, English proficiency, achievement tendency, weekly hours of employment and financial resources, could discriminate between the two grade groups, pass and not pass. Establishing the relationship between the selected variables and successful course completion might be used to reduce attrition and improve retention. Three research instruments were used to collect data. A Demographic Information form developed by the researcher was used to obtain academic data, the research questionnaire Measure of Achieving Tendency measured achievement motivation, and the Test of Adult Basic Education (TABE), Form 8, Level A, Tests 1, 4, and 5 measured the level of English proficiency. The Department of Nursing academic policy, requiring a minimum course grade of “C” or better was used to determine the final course outcome. A stepwise discriminant analysis procedure indicated that college language level and pre-semester grade point average were significant predictors of final course outcome. ^ Based on the findings of the study recommendations focused on assessing students' English proficiency prior to admission into the nursing program, an intensive remediation plan in language comprehension for at-risk students, and the selection of alternate textbooks and readings that more closely matched the English proficiency level of the students. A pilot study should be conducted to investigate the benefit of raising the admission grade point average. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sexual victimization of young women typically occurs within a context of alcohol use, such that women are more likely to be victimized on days on which they consume alcohol compared to days on which no alcohol is consumed. Additionally, most research on sexual victimization of women has focused on forced sexual acts; consequently, little is known about forms sexual victimization that college women typically experience, such as brief (e.g., unwanted touching) or verbally coerced experiences (e.g., doing sexual things to prevent a partner from leaving). Finally, there is a need for more research on the processes underlying college women's drinking and the specific mechanisms through which drinking increases risk for sexual victimization. This dissertation sought to replicate recent findings of a temporal association between alcohol use and sexual victimization, and to investigate whether or not binge use increased risk for victimization, within a sample of young Hispanic college women, using repeated-measures logistic regression. This study also aimed to identify and explore typologies of victimization experiences in order to better understand types of sexual victimization common among young college women. Finally, the validity of a model of alcohol use and sexual victimization was investigated using structural equation modeling techniques. The results confirmed and extended previous research by demonstrating an increase in the conditional probability of sexual victimization on days of alcohol consumption compared with days of no alcohol consumption, and on days of binge alcohol consumption compared with days of moderate alcohol consumption. Sexual victimization experiences reported in this study were diverse, and cluster analysis was used to identify and explore specific typologies of victimization experiences, including intimate relationship victimization, brief victimization with stranger, prolonged victimization with acquaintance, and workplace victimization. The results from structural equation modeling (SEM) analyses were complex and helped to illuminate the relationships between reasons for drinking, alcohol use, childhood sexual abuse, sexual victimization, psychopathology, and acculturation-related factors among Hispanic college women. These findings have implications for the design of university-based prevention and intervention efforts aimed at reducing rates of alcohol-related sexual victimization within Hispanic populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region—one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees/severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efforts that are underway to rehabilitate the Florida Bay ecosystem to a more natural state are best guided by a comprehensive understanding of the natural versus human-induced variability that has existed within the ecosystem. Benthic foraminifera, which are well-known paleoenvironmental indicators, were identified in 203 sediment samples from six sediment cores taken from Florida Bay, and analyzed to understand the environmental variability through anthropogenically unaltered and altered periods. In this research, taxa serving as indicators of (1) seagrass abundance (which is correlated with water quality), (2) salinity, and (3) general habitat change, were studied in detail over the past 120 years, and more generally over the past ~4000 years. Historical seagrass abundance was reconstructed with the proportions of species that prefer living attached to seagrass blades over other substrates. Historical salinity trends were determined by analyzing brackish versus marine faunas, which were defined based on species’ salinity preferences. Statistical methods including cluster analysis, discriminant analysis, analysis of variance and Fisher’s α were used to analyze trends in the data. The changes in seagrass abundance and salinity over the last ~120 years are attributed to anthropogenic activities such as construction of the Flagler Railroad from the mainland to the Florida Keys, the Tamiami Trail that stretches from the east to west coast, and canals and levees in south Florida, as well as natural events such as droughts and increased rainfall from hurricanes. Longer term changes (over ~4000 years) in seagrass abundance and salinity are mostly related to sea level changes. Since seawater entered the Florida Bay area around ~4000 years ago, only one probable sea level drop occurring around ~3000 years was identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bankruptcy prediction has been a fruitful area of research. Univariate analysis and discriminant analysis were the first methodologies used. While they perform relatively well at correctly classifying bankrupt and nonbankrupt firms, their predictive ability has come into question over time. Univariate analysis lacks the big picture that financial distress entails. Multivariate discriminant analysis requires stringent assumptions that are violated when dealing with accounting ratios and market variables. This has led to the use of more complex models such as neural networks. While the accuracy of the predictions has improved with the use of more technical models, there is still an important point missing. Accounting ratios are the usual discriminating variables used in bankruptcy prediction. However, accounting ratios are backward-looking variables. At best, they are a current snapshot of the firm. Market variables are forward-looking variables. They are determined by discounting future outcomes. Microstructure variables, such as the bid-ask spread, also contain important information. Insiders are privy to more information that the retail investor, so if any financial distress is looming, the insiders should know before the general public. Therefore, any model in bankruptcy prediction should include market and microstructure variables. That is the focus of this dissertation. The traditional models and the newer, more technical models were tested and compared to the previous literature by employing accounting ratios, market variables, and microstructure variables. Our findings suggest that the more technical models are preferable, and that a mix of accounting and market variables are best at correctly classifying and predicting bankrupt firms. Multi-layer perceptron appears to be the most accurate model following the results. The set of best discriminating variables includes price, standard deviation of price, the bid-ask spread, net income to sale, working capital to total assets, and current liabilities to total assets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research was undertaken to explore dimensions of the risk construct, identify factors related to risk-taking in education, and study risk propensity among employees at a community college. Risk-taking propensity (RTP) was measured by the 12-item BCDQ, which consisted of personal and professional risk-related situations balanced for the money, reputation, and satisfaction dimensions of the risk construct. Scoring ranged from 1.00 (most cautious) to 6.00 (most risky).^ Surveys including the BCDQ and seven demographic questions relating to age, gender, professional status, length of service, academic discipline, highest degree, and campus location were sent to faculty, administrators, and academic department heads. A total of 325 surveys were returned, resulting in a 66.7% response rate. Subjects were relatively homogeneous for age, length of service, and highest degree.^ Subjects were also homogeneous for risk-taking propensity: no substantive differences in RTP scores were noted within and among demographic groups, with the possible exception of academic discipline. The mean RTP score for all subjects was 3.77, for faculty was 3.76, for administrators was 3.83, and for department heads was 3.64.^ The relationship between propensity to take personal risks and propensity to take professional risks was tested by computing Pearson r correlation coefficients. The relationships for the total sample, faculty, and administrator groups were statistically significant, but of limited practical significance. Subjects were placed into risk categories by dividing the response scale into thirds. A 3 x 3 factorial ANOVA revealed no interaction effects between professional status and risk category with regard to RTP score. A discriminant analysis showed that a seven-factor model was not effective in predicting risk category.^ The homogeneity of the study sample and the effect of a risk-encouraging environment were discussed in the context of the community college. Since very little data on risk-taking in education is available, risk propensity data from this study could serve as a basis for comparison to future research. Results could be used by institutions to plan professional development activities, designed to increase risk-taking and encourage active acceptance of change. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on - (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region - one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees / severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research was undertaken to explore dimensions of the risk construct, identify factors related to risk-taking in education, and study risk propensity among employees at a community college. Risk-taking propensity (RTP) was measured by the 12-item BCDQ, which consisted of personal and professional risk-related situations balanced for the money, reputation, and satisfaction dimensions of the risk construct. Scoring ranged from 1.00 (most cautious) to 6.00 (most risky). Surveys including the BCDQ and seven demographic questions relating to age, gender, professional status, length of service, academic discipline, highest degree, and campus location were sent to faculty, administrators, and academic department heads. A total of 325 surveys were returned, resulting in a 66.7% response rate. Subjects were relatively homogeneous for age, length of service, and highest degree. Subjects were also homogeneous for risk-taking propensity: no substantive differences in RTP scores were noted within and among demographic groups, with the possible exception of academic discipline. The mean RTP score for all subjects was 3.77, for faculty was 3.76, for administrators was 3.83, and for department heads was 3.64. The relationship between propensity to take personal risks and propensity to take professional risks was tested by computing Pearson r correlation coefficients. The relationships for the total sample, faculty, and administrator groups were statistically significant, but of limited practical significance. Subjects were placed into risk categories by dividing the response scale into thirds. A 3 X 3 factorial ANOVA revealed no interaction effects between professional status and risk category with regard to RTP score. A discriminant analysis showed that a seven-factor model was not effective in predicting risk category. The homogeneity of the study sample and the effect of a risk encouraging environment were discussed in the context of the community college. Since very little data on risk-taking in education is available, risk propensity data from this study could serve as a basis for comparison to future research. Results could be used by institutions to plan professional development activities, designed to increase risk-taking and encourage active acceptance of change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

South Florida continues to become increasingly developed and urbanized. My exploratory study examines connections between land use and water quality. The main objectives of the project were to develop an understanding of how land use has affected water quality in Miami-Dade canals, and an economic optimization model to estimate the costs of best management practices necessary to improve water quality. Results indicate Miami-Dade County land use and water quality are correlated. Through statistical factor and cluster analysis, it is apparent that agricultural areas are associated with higher concentrations of nitrogen, while urban areas commonly have higher levels of phosphorous than agricultural areas. The economic optimization model shows that urban areas can improve water quality by lowering fertilizer inputs. Agricultural areas can also implement methods to improve water quality although it may be more expensive than urban areas. It is important to keep solutions in mind when looking towards future water quality improvements in South Florida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the composition and abundance of mesozooplankton of Bahi'a Ushuaia and Bahi'a Golondrina. These small bays are located in the northern Beagle Channel. Sampling was carried out from January 20 to 23, 2001 and samples were collected from the upper layer at nine stations. This study is the first research on mesozooplankton in this part of the Beagle Channel. Due to their dominance in the mesozooplankton community, we compared our Copepoda data with those reported by other authors from Antarctic coastal environments. By applying cluster analysis, we found two station groups in both bays: one in slightly polluted zones and the other in undisturbed external zones. Four assemblages in Bahi'a Ushuaia and two in Bahi'a Golondrina were determined by using non-metric multidimensional scaling (MDS) and cluster analysis. Mesozooplanktonic assemblages showed a certain resemblance in zones with and without anthropogenic influence. Most of the copepod species in our samples are typical of the sub-Antarctic region. Oithona similis (=0. helgolandica sensu Ramirez, 1966), Oncaea curvata, and Ctenocahmus citer show either similar or higher abundances at Antarctic coastal sites, including the upper layer in oceanic areas, in comparison with sub-Antarctic coastal localities. This suggests that, in agreement with other findings, the Polar Front is probably not a major geographic boundary for the distribution of these species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying 20th-century periodic coastal surge variation is strategic for the 21st-century coastal surge estimates, as surge periodicities may amplify/reduce future MSL enhanced surge forecasts. Extreme coastal surge data from Belfast Harbour (UK) tide gauges are available for 1901–2010 and provide the potential for decadal-plus periodic coastal surge analysis. Annual extreme surge-elevation distributions (sampled every 10-min) are analysed using PCA and cluster analysis to decompose variation within- and between-years to assess similarity of years in terms of Surge Climate Types, and to establish significance of any transitions in Type occurrence over time using non-parametric Markov analysis. Annual extreme surge variation is shown to be periodically organised across the 20th century. Extreme surge magnitude and distribution show a number of significant cyclonic induced multi-annual (2, 3, 5 & 6 years) cycles, as well as dominant multi-decadal (15–25 years) cycles of variation superimposed on an 80 year fluctuation in atmospheric–oceanic variation across the North Atlantic (relative to NAO/AMO interaction). The top 30 extreme surge events show some relationship with NAO per se, given that 80% are associated with westerly dominant atmospheric flows (+ NAO), but there are 20% of the events associated with blocking air massess (− NAO). Although 20% of the top 30 ranked positive surges occurred within the last twenty years, there is no unequivocal evidence of recent acceleration in extreme surge magnitude related to other than the scale of natural periodic variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of custom classification techniques and posterior probability modeling (PPM) using Worldview-2 multispectral imagery to archaeological field survey is presented in this paper. Research is focused on the identification of Neolithic felsite stone tool workshops in the North Mavine region of the Shetland Islands in Northern Scotland. Sample data from known workshops surveyed using differential GPS are used alongside known non-sites to train a linear discriminant analysis (LDA) classifier based on a combination of datasets including Worldview-2 bands, band difference ratios (BDR) and topographical derivatives. Principal components analysis is further used to test and reduce dimensionality caused by redundant datasets. Probability models were generated by LDA using principal components and tested with sites identified through geological field survey. Testing shows the prospective ability of this technique and significance between 0.05 and 0.01, and gain statistics between 0.90 and 0.94, higher than those obtained using maximum likelihood and random forest classifiers. Results suggest that this approach is best suited to relatively homogenous site types, and performs better with correlated data sources. Finally, by combining posterior probability models and least-cost analysis, a survey least-cost efficacy model is generated showing the utility of such approaches to archaeological field survey.