901 resultados para discrete element method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by the Bureau of Mines ..."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Earthquakes have been recognized as resulting from stick-slip frictional instabilities along the faults between deformable rocks. A three-dimensional finite-element code for modeling the nonlinear frictional contact behaviors between deformable bodies with the node-to-point contact element strategy has been developed and applied here to investigate the fault geometry influence on the nucleation and development process of the stick-slip instability along an intra-plate fault through a typical fault bend model, which has a pre-cut fault that is artificially bent by an angle of 5.6degrees at the fault center. The numerical results demonstrate that the geometry of the fault significantly affects nucleation, termination and restart of the stick-slip instability along the intra-plate fault, and all these instability phenomena can be well simulated using the current finite-element algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most magnetic resonance imaging (MRI) spatial encoding techniques employ low-frequency pulsed magnetic field gradients that undesirably induce multiexponentially decaying eddy currents in nearby conducting structures of the MRI system. The eddy currents degrade the switching performance of the gradient system, distort the MRI image, and introduce thermal loads in the cryostat vessel and superconducting MRI components. Heating of superconducting magnets due to induced eddy currents is particularly problematic as it offsets the superconducting operating point, which can cause a system quench. A numerical characterization of transient eddy current effects is vital for their compensation/control and further advancement of the MRI technology as a whole. However, transient eddy current calculations are particularly computationally intensive. In large-scale problems, such as gradient switching in MRI, conventional finite-element method (FEM)-based routines impose very large computational loads during generation/solving of the system equations. Therefore, other computational alternatives need to be explored. This paper outlines a three-dimensional finite-difference time-domain (FDTD) method in cylindrical coordinates for the modeling of low-frequency transient eddy currents in MRI, as an extension to the recently proposed time-harmonic scheme. The weakly coupled Maxwell's equations are adapted to the low-frequency regime by downscaling the speed of light constant, which permits the use of larger FDTD time steps while maintaining the validity of the Courant-Friedrich-Levy stability condition. The principal hypothesis of this work is that the modified FDTD routine can be employed to analyze pulsed-gradient-induced, transient eddy currents in superconducting MRI system models. The hypothesis is supported through a verification of the numerical scheme on a canonical problem and by analyzing undesired temporal eddy current effects such as the B-0-shift caused by actively shielded symmetric/asymmetric transverse x-gradient head and unshielded z-gradient whole-body coils operating in proximity to a superconducting MRI magnet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inverse problem of determining a spacewise-dependent heat source for the parabolic heat equation using the usual conditions of the direct problem and information from one supplementary temperature measurement at a given instant of time is studied. This spacewise-dependent temperature measurement ensures that this inverse problem has a unique solution, but the solution is unstable and hence the problem is ill-posed. We propose a variational conjugate gradient-type iterative algorithm for the stable reconstruction of the heat source based on a sequence of well-posed direct problems for the parabolic heat equation which are solved at each iteration step using the boundary element method. The instability is overcome by stopping the iterative procedure at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented which have the input measured data perturbed by increasing amounts of random noise. The numerical results show that the proposed procedure yields stable and accurate numerical approximations after only a few iterations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem considered is that of determining the fluid velocity for linear hydrostatics Stokes flow of slow viscous fluids from measured velocity and fluid stress force on a part of the boundary of a bounded domain. A variational conjugate gradient iterative procedure is proposed based on solving a series of mixed well-posed boundary value problems for the Stokes operator and its adjoint. In order to stabilize the Cauchy problem, the iterations are ceased according to an optimal order discrepancy principle stopping criterion. Numerical results obtained using the boundary element method confirm that the procedure produces a convergent and stable numerical solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.

In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.

Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the process of engineering design of structural shapes, the flat plate analysis results can be generalized to predict behaviors of complete structural shapes. In this case, the purpose of this project is to analyze a thin flat plate under conductive heat transfer and to simulate the temperature distribution, thermal stresses, total displacements, and buckling deformations. The current approach in these cases has been using the Finite Element Method (FEM), whose basis is the construction of a conforming mesh. In contrast, this project uses the mesh-free Scan Solve Method. This method eliminates the meshing limitation using a non-conforming mesh. I implemented this modeling process developing numerical algorithms and software tools to model thermally induced buckling. In addition, convergence analysis was achieved, and the results were compared with FEM. In conclusion, the results demonstrate that the method gives similar solutions to FEM in quality, but it is computationally less time consuming.