979 resultados para dipole
Resumo:
The emission intensity of fluorophore molecule may change in presence of strong plasmon field induced by nanoparticles. The enhancement intensity is optimized through selective clustering or functionalization of nanoparticles in closed vicinity of fluorophore. Our study is aimed at understanding the enhancement mechanism of fluorescence intensity in presence of gold nanoparticles to utilize it in molecular sensing and in situ imaging in the microfluidic lab-on-chip device. Related phenomena are studied in situ in a microfluidic channel via fluorescence imaging. Detailed analysis is carried out to understand the possible mechanism of enhancement of fluorescence due to nanoparticles. In the present experimental study we show that SYTO9 fluorescence intensity increased in presence of Au nanoparticles of similar to 20 nm diameter. The fluorescence intensity is 20 time more compared to that in absence of Au nanoparticles. The enhancement of fluorescence intensity is attributed to the plasmonic resonance of Au nanoparticle at around the fluorescence emission wavelength. Underlying fundamental mechanism via dipole interaction model is explored for quantitative correlation of plasmonic enhancement properties.
Resumo:
White-light emitting Dy3+ doped layered BiOCl phosphors were synthesized by the solid state route and their structure was confirmed by the Rietveld refinement method. On substitution of Dy3+ ion to Bi3+-site in BiOCl, the photoluminescence spectra exhibit blue (F-4(9/2) -> H-6(15/2)), yellow (F-4(9/2) -> H-6(13/2)) and red (F-4(9/2) -> H-6(11/2)) emissions which function together to generate white light. It was found that the emission intensity increases up to 9 mol% of Dy3+ and then quenched due to dipole-dipole interaction. Judd-Ofelt theory and radiative properties suggest that the present phosphors have a long lifetime, high quantum efficiency, excellent color purity and better stimulated emission cross-section compared to reported Dy3+ doped compounds. The obtained color chromaticity results are close to the National Television System Committee standard and clearly establish the bright prospects of these phosphors in white luminescence. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Quantifying and characterising atomic defects in nanocrystals is difficult and low-throughput using the existing methods such as high resolution transmission electron microscopy (HRTEM). In this article, using a defocused wide-field optical imaging technique, we demonstrate that a single ultrahigh-piezoelectric ZnO nanorod contains a single defect site. We model the observed dipole-emission patterns from optical imaging with a multi-dimensional dipole and find that the experimentally observed dipole pattern and model-calculated patterns are in excellent agreement. This agreement suggests the presence of vertically oriented degenerate-transition-dipoles in vertically aligned ZnO nanorods. The HRTEM of the ZnO nanorod shows the presence of a stacking fault, which generates a localised quantum well induced degenerate-transition-dipole. Finally, we elucidate that defocused wide-field imaging can be widely used to characterise defects in nanomaterials to answer many difficult questions concerning the performance of low-dimensional devices, such as in energy harvesting, advanced metal-oxide-semiconductor storage, and nanoelectromechanical and nanophotonic devices.
Resumo:
White-light emitting Dy3+ doped layered BiOCl phosphors were synthesized by the solid state route and their structure was confirmed by the Rietveld refinement method. On substitution of Dy3+ ion to Bi3+-site in BiOCl, the photoluminescence spectra exhibit blue (F-4(9/2) -> H-6(15/2)), yellow (F-4(9/2) -> H-6(13/2)) and red (F-4(9/2) -> H-6(11/2)) emissions which function together to generate white light. It was found that the emission intensity increases up to 9 mol% of Dy3+ and then quenched due to dipole-dipole interaction. Judd-Ofelt theory and radiative properties suggest that the present phosphors have a long lifetime, high quantum efficiency, excellent color purity and better stimulated emission cross-section compared to reported Dy3+ doped compounds. The obtained color chromaticity results are close to the National Television System Committee standard and clearly establish the bright prospects of these phosphors in white luminescence. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In the chiral nematic phase, flexoelectricity can give rise to an interesting electrooptic switching effect, known as flexoelectro-optic switching. Flexoelectro-optic switching gives a fast v-shaped switching regime. Previous studies show that symmetric bimesogens are particularly suited for flexoelectro-optic switching. By introducing two ester linking groups into the molecular structure of a symmetric bimesogen, it was hypothesised that the flexoelectric properties will be enhanced significantly because of the resulting increase in the dipole moment of the molecules. This was found to be the correct; however, the inclusion of ester linking groups reduced the liquid crystallinity of the material.
Resumo:
In this paper, we report on the flexoelastic and viscoelastic ratios for a number of bimesogens compounds with the same generic structure. Values are obtained indirectly by measuring the flexoelectro-optic response in the chiral nematic phase. By varying the molecular structure we alter the bend angle, transverse dipole moment, and length of the molecule. First, to examine the influence of the bend angle we use a homologous series whereby the only alteration in the molecular structure is the number of methylene units in the aliphatic spacer, n. Results show that the flexoelastic ratio, e K, and the effective flexoelectric coefficient, e, both exhibit an odd-even effect with values for n=odd being greater than that for n=even. This is understood in terms of an increase in the bend angle of the molecule and an increase in the transverse dipole moment. Second, in order to investigate the impact of the dipole moment, we have altered the mesogenic units so as to vary the longitudinal dipole moment and used different linkages in the aliphatic spacer in an attempt to alter the transverse dipole moment. Qualitatively, the results demonstrate that the odd-spaced bimesogen with larger transverse dipole moments exhibit larger flexoelastic ratios. © 2007 The American Physical Society.
Resumo:
A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the measurement and simulation of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed on the rough plates which also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit satisfactory similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. However, the simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
A transmission electron microscopy (TEM) study has been carried out to uncover how dislocations and twins accommodate large plastic strains and accumulate in very small nanocrystalline Ni grains during low-temperature deformation. We illustrate dislocation patterns that suggest preferential deformation and nonuniform defect storage inside the nanocrystalline grain. Dislocations are present in individual and dipole configurations. Most dislocations are of the 60 degrees type and pile up on (111) slip planes. Various deformation responses, in the forms of dislocations and twinning, may simultaneously occur inside a nanocrystalline grain. Evidence for twin boundary migration has been obtained. The rearrangement and organization of dislocations, sometimes interacting with the twins, lead to the formation of subgrain boundaries, subdividing the nanograin into mosaic domain structures. The observation of strain (deformation)-induced refinement contrasts with the recently reported stress-assisted grain growth in nanocrystalline metals and has implications for understanding the stability and deformation behavior of these highly nonequilibrium materials.
Resumo:
During its 1990 operation, 2 large RF systems were available on JET. The Ion Cyclotron Resonance Heating (ICRH) system was equipped with new beryllium screens and with feedback matching systems. Specific impurities generated by ICRH were reduced to negligible levels even in the most stringent H-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained by pellet injection. A value of n(d) tau-E T(i) = 7.8 x 10(20) m-3 s keV was obtained in this mode with T(e) approximately T(i) approximately 11 keV. In the L-mode regime, a regime, a record (140 kW) D-He-3 fusion power was generated with 10 - 14 MW of ICRH at the He-3 cyclotron frequency. Experiments were performed with the prototype launcher of the Lower Hybrid Current Drive (LHCD) systems with coupled power up to 1.6 MW with current drive efficiencies up to < n(e) > R I(CD)/P = 0.4 x 10(20) m-2 A/W. Fast electrons are driven by LHCD to tail temperatures of 100 keV with a hollow radial profile. Paradoxically, LHCD induces central heating particularly in combination with ICRH. Finally we present the first observations of the synergistic acceleration of fast electrons by Transit Time Magnetic Pumping (TTMP) (from ICRH) and Electron Landau Damping (ELD) (from LHCD). The synergism generates TTMP current drive even without phasing the ICRH antennae.
Resumo:
A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-fitted single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and charge carriers in the tube. Our work validates this structure of a water-fitted SWCNT as a promising candidate for a synthetic nanoscale power cell, as well as a practical nanopower harvesting device at the atomic level.
Resumo:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.
Resumo:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration the diffusion coefficient the dipole orientation and the density distribution and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.
Resumo:
An approach which combines direct numerical simulation (DNS) with the Lighthill acoustic analogy theory is used to study the potential noise sources during the transition process of a Mach 2.25 flat plate boundary layer. The quadrupole sound sources due to the flow fluctuations and the dipole sound sources due to the fluctuating surface stress are obtained. Numerical results suggest that formation of the high shear layers leads to a dramatic amplification of amplitude of the fluctuating quadrupole sound sources. Compared with the quadrupole sound source, the energy of dipole sound source is concentrated in the relatively low frequency range.
Resumo:
Two-step phase transition model, displacive to order-disorder, is proposed. The driving forces for these two transitions are fundamentally different. The displacive phase transition is one type of the structural phase transitions. We clearly define the structural phase transition as the symmetry broking of the unit cell and the electric dipole starts to form in the unit cell. Then the dipole-dipole interaction takes place as soon as the dipoles in unit cells are formed. We believe that the dipole-dipole interaction may cause an order-disorder phase transition following the displacive phase transition. Both structural and order-disorder phase transition can be first-order or second-order or in between. We found that the structural transition temperatures can be lower or equal or higher than the order-disorder transition temperature. The para-ferroelectric phase transition is the combination of the displacive and order-disorder phase transitions. It generates a variety of transition configurations along with confusions. In this paper, we discuss all these configurations using our displacive to order-disorder two-step phase transition model and clarified all the confusions.
Resumo:
We investigate the ultrafast four-wave mixing (FWM) with two-color few-cycle ultrashort pulses propagating in a two-level polar molecule medium. It is found that the enhancement of FWM can be achieved even for low intensity pulses due to the effects of permanent dipole moments (PDM) in polar molecules. Moreover, the conversion efficiency of FWM can be controlled by the carrier-envelope phases (CEP) of two ultrashort pulses. (c) 2006 Optical Society of America