973 resultados para digestibility coefficient
Resumo:
In a ball-on-disc wear test, an alumina ceramic body sliding against a silicon nitride ceramic body in water achieved an ultra-low friction coefficient (ULFC) of 0.004. The profilometer and EDX measurements indicated that the ULFC regime in this unmated Al2O3-Si3N4 pair was achieved because of the formation of a flat and smooth interface of nanometric roughness, which favored the hydrodynamic lubrication. The triboreactions formed silicon and aluminum hydroxides which contributed to decrease roughness and shear stress at the contact interface. This behavior enables the development of low energy loss water-based tribological systems using oxide ceramics. 13 2012 Elsevier B.V. All rights reserved.
Resumo:
We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n(2)) and two-photon absorption coefficient (beta). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n(2) and beta. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723829]
Resumo:
Objective. To test the hypothesis that the difference in the coefficient of thermal contraction of the veneering porcelain above (˛liquid) and below (˛solid) its Tg plays an important role in stress development during a fast cooling protocol of Y-TZP crowns. Methods. Three-dimensional finite element models of veneered Y-TZP crowns were developed. Heat transfer analyses were conducted with two cooling protocols: slow (group A) and fast (groups B–F). Calculated temperatures as a function of time were used to determine the thermal stresses. Porcelain ˛solid was kept constant while its ˛liquid was varied, creating different ˛/˛solid conditions: 0, 1, 1.5, 2 and 3 (groups B–F, respectively). Maximum ( 1) and minimum ( 3) residual principal stress distributions in the porcelain layer were compared. Results. For the slowly cooled crown, positive 1 were observed in the porcelain, orientated perpendicular to the core–veneer interface (“radial” orientation). Simultaneously, negative 3 were observed within the porcelain, mostly in a hoop orientation (“hoop–arch”). For rapidly cooled crowns, stress patterns varied depending on ˛/˛solid ratios. For groups B and C, the patterns were similar to those found in group A for 1 (“radial”) and 3 (“hoop–arch”). For groups D–F, stress distribution changed significantly, with 1 forming a “hoop-arch” pattern while 3 developed a “radial” pattern. Significance. Hoop tensile stresses generated in the veneering layer during fast cooling protocols due to porcelain high ˛/˛solid ratio will facilitate flaw propagation from the surface toward the core, which negatively affects the potential clinical longevity of a crown.
Resumo:
Abstract Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v) or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process), the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse) to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between neighboring cell walls, as well as by changes in the inner cell wall structure, such as damaging, hole formation and loss of mechanical resistance, facilitating liquid and enzyme access to crystalline cellulose. Conclusions The results presented herewith show the efficiency of the proposed method for improving the enzymatic digestibility of sugarcane bagasse and provide understanding of the pretreatment action mechanism. Combining the different techniques applied in this work warranted thorough information about the undergoing morphological and chemical changes and was an efficient approach to understand the morphological effects resulting from sample delignification and its influence on the enhanced hydrolysis results.
Resumo:
Abstract Background The recalcitrance of lignocellulosic materials is a major limitation for their conversion into fermentable sugars. Lignin depletion in new cultivars or transgenic plants has been identified as a way to diminish this recalcitrance. In this study, we assessed the success of a sugarcane breeding program in selecting sugarcane plants with low lignin content, and report the chemical composition and agronomic characteristics of eleven experimental hybrids and two reference samples. The enzymatic digestion of untreated and chemically delignified samples was evaluated to advance the performance of the sugarcane residue (bagasse) in cellulosic-ethanol production processes. Results The ranges for the percentages of glucan, hemicellulose, lignin, and extractive (based on oven-dry biomass) of the experimental hybrids and reference samples were 38% to 43%, 25% to 32%, 17% to 24%, and 1.6% to 7.5%, respectively. The samples with the smallest amounts of lignin did not produce the largest amounts of total polysaccharides. Instead, a variable increase in the mass of a number of components, including extractives, seemed to compensate for the reduction in lignin content. Hydroxycinnamic acids accounted for a significant part of the aromatic compounds in the samples, with p-coumaric acid predominating, whereas ferulic acid was present only in low amounts. Hydroxycinnamic acids with ester linkage to the hemicelluloses varied from 2.3% to 3.6%. The percentage of total hydroxycinnamic acids (including the fraction linked to lignin through ether linkages) varied from 5.0% to 9.2%, and correlated to some extent with the lignin content. These clones released up to 31% of glucose after 72 hours of digestion with commercial cellulases, whereas chemically delignified samples led to cellulose conversion values of more than 80%. However, plants with lower lignin content required less delignification to reach higher efficiencies of cellulose conversion during the enzymatic treatment. Conclusion Some of the experimental sugarcane hybrids did have the combined characteristics of high biomass and high sucrose production with low lignin content. Conversion of glucan to glucose by commercial cellulases was increased in the samples with low lignin content. Chemical delignification further increased the cellulose conversion to values of more than 80%. Thus, plants with lower lignin content required less delignification to reach higher efficiencies of cellulose conversion during the enzymatic treatment.
Resumo:
Abstract Background In recent years, the growing demand for biofuels has encouraged the search for different sources of underutilized lignocellulosic feedstocks that are available in sufficient abundance to be used for sustainable biofuel production. Much attention has been focused on biomass from grass. However, large amounts of timber residues such as eucalyptus bark are available and represent a potential source for conversion to bioethanol. In the present paper, we investigate the effects of a delignification process with increasing sodium hydroxide concentrations, preceded or not by diluted acid, on the bark of two eucalyptus clones: Eucalyptus grandis (EG) and the hybrid, E. grandis x urophylla (HGU). The enzymatic digestibility and total cellulose conversion were measured, along with the effect on the composition of the solid and the liquor fractions. Barks were also assessed using Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), X-Ray diffraction, and scanning electron microscopy (SEM). Results Compositional analysis revealed an increase in the cellulose content, reaching around 81% and 76% of glucose for HGU and EG, respectively, using a two-step treatment with HCl 1%, followed by 4% NaOH. Lignin removal was 84% (HGU) and 79% (EG), while the hemicellulose removal was 95% and 97% for HGU and EG, respectively. However, when we applied a one-step treatment, with 4% NaOH, higher hydrolysis efficiencies were found after 48 h for both clones, reaching almost 100% for HGU and 80% for EG, in spite of the lower lignin and hemicellulose removal. Total cellulose conversion increased from 5% and 7% to around 65% for HGU and 59% for EG. NMR and FTIR provided important insight into the lignin and hemicellulose removal and SEM studies shed light on the cell-wall unstructuring after pretreatment and lignin migration and precipitation on the fibers surface, which explain the different hydrolysis rates found for the clones. Conclusion Our results show that the single step alkaline pretreatment improves the enzymatic digestibility of Eucalyptus bark. Furthermore, the chemical and physical methods combined in this study provide a better comprehension of the pretreatment effects on cell-wall and the factors that influence enzymatic digestibility of this forest residue.
Resumo:
The experiment was conducted to evaluate the bromatological characteristics and the in vitro digestibility of four sugarcane varieties, subjected or not to hydrolysis, with quicklime. A completely randomized design was employed with three replications arranged in a 4 × 2 factorial scheme, with four sugarcane varieties (SP 52454, RB 867515, RB 855536 and IAC 862480), hydrolyzed or not. There was significant effect on brix (p < 0.05) and industrial fiber (p < 0.05), and IAC 862480 variety had the lowest levels of industrial fiber. There were no significant difference (p > 0.05) in neutral detergent fiber, acid detergent fiber and lignin levels among the sugarcane varieties under analysis and for the sugarcanes, hydrolyzed or not. The use of sugarcane hydrolysis with 1% quicklime improves the in vitro digestibility of NDF and ADF, regardless of the variety studied. Hydrolysis with 1% quicklime did not alter the sugarcane chemical composition.
Resumo:
Twelve ileal cannulated pigs (30.9 ± 2.7 kg) were used to determine the apparent (AID) and standardized (SID) ileal digestibility of protein and AA in canola meals (CM) derived from black- (BNB) and yellow-seeded (BNY) Brassica napus canola and yellow-seeded Brassica juncea (BJY). The meals were produced using either the conventional pre-press solvent extraction process (regular meal) or a new, vacuum-assisted cold process of meal de-solventization (white flakes) to provide 6 different meals. Six cornstarch-based diets containing 35% canola meal as the sole source of protein in a 3 (variety) × 2 (processing) factorial arrangement were randomly allotted to pigs in a 6 × 7 incomplete Latin square design to have 6 replicates per diet. A 5% casein diet was fed to estimate endogenous AA losses. Canola variety and processing method interacted for the AID of DM (P = 0.048), N (P = 0.010), and all AA (P < 0.05), except for Arg, Lys, Phe, Asp, Glu, and Pro. Canola variety affected or tended to affect the AID of most AA but had no effect on the AID of Lys, Met, Val, Cys, and Pro, whereas processing method had an effect on only Lys and Asp and tended to affect the AID of Thr, Gly and Ser. The effects of canola variety, processing method, and their interaction on the SID values for N and AA followed a similar pattern as for AID values. For the white flakes, SID of N in BJY (74.2%) was lower than in BNY and BNB, whose values averaged 78.5%; however, among the regular meals, BJY had a greater SID value for N than BNY and BNB (variety × processing, P = 0.015). For the white flakes, the SID of Ile (86.4%), Leu (87.6%), Lys (88.9%), Thr (87.6%) and Val (84.2%) in BNB were greater than BNY and BJY. Opposite results were observed for the regular processing, with SID of Lys (84.1%), Met (89.5%), Thr (84.1%), and Val (83.6%) being greater in BJY, followed by BNB and BNY(variety × processing, P < 0.057). The SID of Met was greatest for the white flakes (90.2%) but least for the regular processing (83.0%) in BNY (variety × processing, P < 0.057). It was concluded that the AID and SID of N and AA of the CM tested varied according to canola variety and the processing method used. Overall, the SID values for Ile, Leu, Lys, Met, Thr, and Val averaged across CM types and processing methods were 81.8, 82.6, 83.4, 85.9, 80.8, and 78.4%, respectively.
Resumo:
Problem statement: The aim of the present study was to characterize and differentiate the effects of addition of flavomycin or monensin on ruminal fermentation and degradability as well as on total digestibility in bovine. Approach: Twelve non-pregnant and non-lactating cows (736 kg of BW) were randomly assigned to three treatments: control, flavomycin (20 mg animal-1 day-1) and monensin (300 mg animal-1 day-1). The trial lasted 21 days. The last 10 days were used for external marker administration (15 g of chromic oxide animal-1 day-1). The last 5 days of the trial were used for feces collection and evaluation of corn grain, soybean meal or sugarcane ruminal degradability and the 21st day was used for ruminal fluid sampling. Results: Monensin increased 27.2%, on average, propionate molar proportion at 0, 4, 6, 8, 10 and 12 h after feeding, compared to control and flavomycin groups. When compared to control, flavomycin reduced the degradation rate of soybean meal CP in 31.0%, decreasing the effective degradability when passage rates of 5 and 8% h-1 were used. Dry matter intake, pH, total Short Chain Fatty Acids (tSCFA) or ammoniacal Nitrogen (NH3-N) concentration were not influenced by the addition of either antibiotics. Effective degradability of sugarcane NDF was not influenced by the use of either antibiotic; neither were the TDN nor the digestibility of DM, CP, EE, NFE, ADF, NDF, GE or starch of the diet. Conclusion/Recommendations: In the present study, it was possible to show the beneficial effects of monensin but not of flavomycin, on rumen fermentation
Resumo:
Today’s pet food industry is growing rapidly, with pet owners demanding high-quality diets for their pets. The primary role of diet is to provide enough nutrients to meet metabolic requirements, while giving the consumer a feeling of well-being. Diet nutrient composition and digestibility are of crucial importance for health and well being of animals. A recent strategy to improve the quality of food is the use of “nutraceuticals” or “Functional foods”. At the moment, probiotics and prebiotics are among the most studied and frequently used functional food compounds in pet foods. The present thesis reported results from three different studies. The first study aimed to develop a simple laboratory method to predict pet foods digestibility. The developed method was based on the two-step multi-enzymatic incubation assay described by Vervaeke et al. (1989), with some modification in order to better represent the digestive physiology of dogs. A trial was then conducted to compare in vivo digestibility of pet-foods and in vitro digestibility using the newly developed method. Correlation coefficients showed a close correlation between digestibility data of total dry matter and crude protein obtained with in vivo and in vitro methods (0.9976 and 0.9957, respectively). Ether extract presented a lower correlation coefficient, although close to 1 (0.9098). Based on the present results, the new method could be considered as an alternative system of evaluation of dog foods digestibility, reducing the need for using experimental animals in digestibility trials. The second parte of the study aimed to isolate from dog faeces a Lactobacillus strain capable of exert a probiotic effect on dog intestinal microflora. A L. animalis strain was isolated from the faeces of 17 adult healthy dogs..The isolated strain was first studied in vitro when it was added to a canine faecal inoculum (at a final concentration of 6 Log CFU/mL) that was incubated in anaerobic serum bottles and syringes which simulated the large intestine of dogs. Samples of fermentation fluid were collected at 0, 4, 8, and 24 hours for analysis (ammonia, SCFA, pH, lactobacilli, enterococci, coliforms, clostridia). Consequently, the L. animalis strain was fed to nine dogs having lactobacilli counts lower than 4.5 Log CFU per g of faeces. The study indicated that the L animalis strain was able to survive gastrointestinal passage and transitorily colonize the dog intestine. Both in vitro and in vivo results showed that the L. animalis strain positively influenced composition and metabolism of the intestinal microflora of dogs. The third trail investigated in vitro the effects of several non-digestible oligosaccharides (NDO) on dog intestinal microflora composition and metabolism. Substrates were fermented using a canine faecal inoculum that was incubated in anaerobic serum bottles and syringes. Substrates were added at the final concentration of 1g/L (inulin, FOS, pectin, lactitol, gluconic acid) or 4g/L (chicory). Samples of fermentation fluid were collected at 0, 6, and 24 hours for analysis (ammonia, SCFA, pH, lactobacilli, enterococci, coliforms). Gas production was measured throughout the 24 h of the study. Among the tested NDO lactitol showed the best prebiotic properties. In fact, it reduced coliforms and increased lactobacilli counts, enhanced microbial fermentation and promoted the production of SCFA while decreasing BCFA. All the substrates that were investigated showed one or more positive effects on dog faecal microflora metabolism or composition. Further studies (in particular in vivo studies with dogs) will be needed to confirm the prebiotic properties of lactitol and evaluate its optimal level of inclusion in the diet.
Resumo:
The beta-decay of free neutrons is a strongly over-determined process in the Standard Model (SM) of Particle Physics and is described by a multitude of observables. Some of those observables are sensitive to physics beyond the SM. For example, the correlation coefficients of the involved particles belong to them. The spectrometer aSPECT was designed to measure precisely the shape of the proton energy spectrum and to extract from it the electron anti-neutrino angular correlation coefficient "a". A first test period (2005/ 2006) showed the “proof-of-principles”. The limiting influence of uncontrollable background conditions in the spectrometer made it impossible to extract a reliable value for the coefficient "a" (publication: Baessler et al., 2008, Europhys. Journ. A, 38, p.17-26). A second measurement cycle (2007/ 2008) aimed to under-run the relative accuracy of previous experiments (Stratowa et al. (1978), Byrne et al. (2002)) da/a =5%. I performed the analysis of the data taken there which is the emphasis of this doctoral thesis. A central point are background studies. The systematic impact of background on a was reduced to da/a(syst.)=0.61 %. The statistical accuracy of the analyzed measurements is da/a(stat.)=1.4 %. Besides, saturation effects of the detector electronics were investigated which were initially observed. These turned out not to be correctable on a sufficient level. An applicable idea how to avoid the saturation effects will be discussed in the last chapter.
Resumo:
Nowadays, in developed countries, the excessive food intake, in conjunction with a decreased physical activity, has led to an increase in lifestyle-related diseases, such as obesity, cardiovascular diseases, type -2 diabetes, a range of cancer types and arthritis. The socio-economic importance of such lifestyle-related diseases has encouraged countries to increase their efforts in research, and many projects have been initiated recently in research that focuses on the relationship between food and health. Thanks to these efforts and to the growing availability of technologies, the food companies are beginning to develop healthier food. The necessity of rapid and affordable methods, helping the food industries in the ingredient selection has stimulated the development of in vitro systems that simulate the physiological functions to which the food components are submitted when administrated in vivo. One of the most promising tool now available appears the in vitro digestion, which aims at predicting, in a comparative way among analogue food products, the bioaccessibility of the nutrients of interest.. The adoption of the foodomics approach has been chosen in this work to evaluate the modifications occurring during the in vitro digestion of selected protein-rich food products. The measure of the proteins breakdown was performed via NMR spectroscopy, the only techniques capable of observing, directly in the simulated gastric and duodenal fluids, the soluble oligo- and polypeptides released during the in vitro digestion process. The overall approach pioneered along this PhD work, has been discussed and promoted in a large scientific community, with specialists networked under the INFOGEST COST Action, which recently released a harmonized protocol for the in vitro digestion. NMR spectroscopy, when used in tandem with the in vitro digestion, generates a new concept, which provides an additional attribute to describe the food quality: the comparative digestibility, which measures the improvement of the nutrients bioaccessibility.
Resumo:
Wir betrachten Systeme von endlich vielen Partikeln, wobei die Partikel sich unabhängig voneinander gemäß eindimensionaler Diffusionen [dX_t = b(X_t),dt + sigma(X_t),dW_t] bewegen. Die Partikel sterben mit positionsabhängigen Raten und hinterlassen eine zufällige Anzahl an Nachkommen, die sich gemäß eines Übergangskerns im Raum verteilen. Zudem immigrieren neue Partikel mit einer konstanten Rate. Ein Prozess mit diesen Eigenschaften wird Verzweigungsprozess mit Immigration genannt. Beobachten wir einen solchen Prozess zu diskreten Zeitpunkten, so ist zunächst nicht offensichtlich, welche diskret beobachteten Punkte zu welchem Pfad gehören. Daher entwickeln wir einen Algorithmus, um den zugrundeliegenden Pfad zu rekonstruieren. Mit Hilfe dieses Algorithmus konstruieren wir einen nichtparametrischen Schätzer für den quadrierten Diffusionskoeffizienten $sigma^2(cdot),$ wobei die Konstruktion im Wesentlichen auf dem Auffüllen eines klassischen Regressionsschemas beruht. Wir beweisen Konsistenz und einen zentralen Grenzwertsatz.