774 resultados para data-driven decision making


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Switzerland there is a strong movement at a national policy level towards strengthening patient rights and patient involvement in health care decisions. Yet, there is no national programme promoting shared decision making. First decision support tools (prenatal diagnosis and screening) for the counselling process have been developed and implemented. Although Swiss doctors acknowledge that shared decision making is important, hierarchical structures and asymmetric physician-patient relationships are still prevailing. The last years have seen some promising activities regarding the training of medical students and the development of patient support programmes. Swiss direct democracy and the habit of consensual decision making and citizen involvement in general may provide a fertile ground for SDM development in the primary care setting.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactive Choice Aid (ICA) is a decision aid, introduced in this paper, that systematically assists consumers with online purchase decisions. ICA integrates aspects from prescriptive decision theory, insights from descriptive decision research, and practical considerations; thereby combining pre-existing best practices with novel features. Instead of imposing an objectively ideal but unnatural decision procedure on the user, ICA assists the natural process of human decision-making by providing explicit support for the execution of the user's decision strategies. The application contains an innovative feature for in-depth comparisons of alternatives through which users' importance ratings are elicited interactively and in a playful way. The usability and general acceptance of the choice aid was studied; results show that ICA is a promising contribution and provides insights that may further improve its usability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed decision-making capacity and emotional reactivity in 20 patients with multiple sclerosis (MS) and in 16 healthy subjects using the Gambling Task (GT), a model of real-life decision making, and the skin conductance response (SCR). Demographic, neurological, affective, and cognitive parameters were analyzed in MS patients for their effect on decision-making performance. MS patients persisted longer (slope, -3.6%) than the comparison group (slope, -6.4%) in making disadvantageous choices as the GT progressed (p < 0.001), suggesting significant slower learning in MS. Patients with higher Expanded Disability Status Scale scores (EDSS >2.0) showed a different pattern of impairment in the learning process compared with patients with lower functional impairment (EDSS </=2.0). This slower learning was associated with impaired emotional reactivity (anticipatory SCR 3.9 vs 6.1 microSiemens [microS] for patients vs the comparison group, p < 0.0001; post-choice SCR 3.9 vs 6.2 microS, p < 0.0001), but not with executive dysfunction. Impaired emotional dimensions of behavior (assessed using the Dysexecutive Questionnaire, p < 0.002) also correlated with slower learning. Given the considerable consequences that impaired decision making can have on daily life, we suggest that this factor may contribute to handicap and altered quality of life secondary to MS and is dependent on emotional experience. Ann Neurol 2004.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new aggregation method for decision making is presented by using induced aggregation operators and the index of maximum and minimum level. Its main advantage is that it can assess complex reordering processes in the aggregation that represent complex attitudinal characters of the decision maker such as psychological or personal factors. A wide range of properties and particular cases of this new approach are studied. A further generalization by using hybrid averages and immediate weights is also presented. The key issue in this approach against the previous model is that we can use the weighted average and the ordered weighted average in the same formulation. Thus, we are able to consider the subjective attitude and the degree of optimism of the decision maker in the decision process. The paper ends with an application in a decision making problem based on the use of the assignment theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[spa] Se presenta un nuevo modelo para la toma de decisiones basado en el uso de medidas de distancia y de operadores de agregación inducidos. Se introduce la distancia media ponderada ordenada inducida (IOWAD). Es un nuevo operador de agregación que extiende el operador OWA a través del uso de distancias y un proceso de reordenación de los argumentos basado en variables de ordenación inducidas. La principal ventaja el operador IOWAD es la posibilidad de utilizar una familia parametrizada de operadores de agregación entre la distancia individual máxima y la mínima. Se estudian algunas de sus principales propiedades y algunos casos particulares. Se desarrolla un ejemplo numérico en un problema de toma de decisiones sobre selección de inversiones. Se observa que la principal ventaja de este modelo en la toma de decisiones es la posibilidad de mostrar una visión más completa del proceso, de forma que el decisor está capacitado para seleccionar la alternativa que está más cerca de sus intereses.