979 resultados para död


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report results of the magnetization and ac susceptibility measurements down to very low fields on a single crystal of the perovskite manganite, La-0.82 Ca-0.18 MnO3. This composition falls in the intriguing ferromagnetic insulator region of the manganite phase diagram. In contrast to earlier beliefs, our investigations reveal that magnetically (and in every other sense), this is a single- phase system with a ferromagnetic ordering temperature of around 170 K. However, this ferromagnetic state is magnetically frustrated, and the system exhibits pronounced glassy dynamics below 90 K. Based on measured dynamical properties, we propose that this quasi-long-ranged ferromagnetic phase, and the associated superspin glass behavior, is the true magnetic state of the system, rather than being a macroscopic mixture of ferromagnetic and antiferromagnetic phases, as often suggested. Our results provide an understanding of the quantum phase transition from an antiferromagnetic insulator to a ferromagnetic metal via this ferromagnetic state as a function of x in La1-xCaxMnO3, in terms of the possible formation of magnetic polarons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure of quasi-two-dimensional monophosphate tungsten bronze, P4W12O44, has been investigated by high-resolution angle-resolved photoemission spectroscopy and density functional theoretical calculations. Experimental electron-like bands around Gamma point and Fermi surfaces have similar shapes as predicted by calculations. Fermi surface mapping at different temperatures shows a depletion of density of states at low temperature in certain flat portions of the Fermi surfaces. These flat portions of the Fermi surfaces satisfy the partial nesting condition with incommensurate nesting vectors q(1) and q(2), which leads to the formation of charge density waves in this phosphate tungsten bronzes. The setting up of charge density wave in these bronzes can well explain the anomaly observed in its transport properties. Copyright (C) EPLA, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of a high Neel temperature in a 5d oxide, NaOsO3, has been analyzed within the mean-field limit of a multiband Hubbard model and compared with the analogous 4d oxide, SrTcO3. Our analysis shows that there are a lot of similarities in both of these oxides on the dependence of the effective exchange interaction strength (J(0)) on the electron-electron interaction strength ( U). However, the relevant value of U in each system puts them in different portions of the parameter space. Although the Neel temperature for NaOsO3 is less than that for SrTcO3, our results suggest that there could be examples among other 5d oxides that have a higher Neel temperature. We have also examined the stability of the G-type antiferromagnetic state found in NaOsO3 as a function of electron doping within GGA + U calculations and find a robust G-type antiferromagnetic metallic state stabilized. The most surprising aspect of the doped results is the rigid bandlike evolution of the electronic structure, which indicates that the magnetism in NaOsO3 is not driven by Fermi surface nesting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hexagonal Ln(2)CuTiO(6) (Ln = Y, Dy, Ho, Er, and Yb) exhibits a rare combination of interesting dielectric properties, in the form of relatively large dielectric constants (epsilon' > 30), low losses, and extremely small temperature and frequency dependencies, over large ranges of temperature and frequency Choudhury et al., Appl. Phys. Lett. 96, 162903 (2010) and Choudhury et al., Phys. Rev. B 82, 134203 (2010)], making these compounds promising as high-k dielectric materials. The authors present a brief review of the existing literature on this interesting class of oxides, complimenting it with spectroscopic data in conjunction with first-principles calculation results, revealing a novel mechanism underlying these robust dielectric properties. These show that the large size differences in Cu2+ and Ti4+ at the B-site, aided by an inherent random distribution of CuO5 and TiO5 polyhedral units, frustrates the ferroelectric instability, inherent to the noncentrosymmetric P6(3) cm space group of this system, and gives rise to the observed relatively large dielectric constant values. Additionally, the phononic contributions to the dielectric constant are dominated primarily by mid-frequency (>100 cm(-1)) polar modes, involving mainly Ti4+ 3d(0) ions. In contrast, the soft polar phonon modes with frequencies typically less than 100 cm(-1), usually responsible for dielectric properties of materials, are found to be associated with non-d(0) Cu2+ ions and to contribute very little, giving rise to the remarkable temperature stability of dielectric properties of these compounds. (C) 2014 American Vacuum Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extended x-ray absorption fine-structure studies have been performed at the Zn K and Cd K edges for a series of solid solutions of wurtzite Zn1-xCdxS samples with x = 0.0, 0.1, 0.25, 0.5, 0.75, and 1.0, where the lattice parameter as a function of x evolves according to the well-known Vegard's law. In conjunction with extensive, large-scale first-principles electronic structure calculations with full geometry optimizations, these results establish that the percentage variation in the nearest-neighbor bond distances are lower by nearly an order of magnitude compared to what would be expected on the basis of lattice parameter variation, seriously undermining the chemical pressure concept. With experimental results that allow us to probe up to the third coordination shell distances, we provide a direct description of how the local structure, apparently inconsistent with the global structure, evolves very rapidly with interatomic distances to become consistent with it. We show that the basic features of this structural evolution with the composition can be visualized with nearly invariant Zn-S-4 and Cd-S-4 tetrahedral units retaining their structural integrity, while the tilts between these tetrahedral building blocks change with composition to conform to the changing lattice parameters according to the Vegard's law within a relatively short length scale. These results underline the limits of applicability of the chemical pressure concept that has been a favored tool of experimentalists to control physical properties of a large variety of condensed matter systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes the determination of the internal structure of heterogeneous nanoparticle systems including inverted core-shell (CdS core and CdSe shell) and alloyed (CdSeS) quantum dots using depth-resolved, variable-energy X-ray photoelectron spectroscopy (XPS). A unique feature of this work is the combination of photoelectron spectroscopy performed at lower X-ray energies (400-700 eV), to achieve surface sensitivity, with bulk sensitive measurements at high photon energies (>2000 eV), thereby providing detailed information about the whole nanoparticle structure with a great accuracy. The use of high photon energies furthermore allows us to investigate nanoparticles much larger than those studied thus far. This capability is a consequence of the much-increased mean free path of the photoelectron achieved at high excitation energies. Our results show that the actual structures of the synthesized nanoparticles are considerably different from the nominal, targeted structures, which can be post facto rationalized in terms of the reactivity of different constituents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoelectric (TE) conversion of waste heat into useful electricity demands optimized thermal and electrical transport in the leg material over a wide temperature range. In order to gain a reasonably high figure of merit (ZT) as well as high thermal electric conversion efficiency, various conditions of the starting material were studied: industrially produced skutterudite powders of p-type DDy(Fe1-xCox)(4)Sb-12 (DD: didymium) and n-type (Mm, Sm)(y)Co4Sb12 (Mm: mischmetal) were used. After a rather fast reaction-melting technique, the bulk was crushed and sieved with various strainers in order to obtain particles below the respective mesh sizes, followed by ball-milling under three different conditions. The dependence of the TE properties (after hot pressing) on the micro/nanosized particles, grains and crystallites was investigated. Optimized conditions resulted in an increase of ZT for bulk material to current record-high values: from ZT similar to 1.1 to ZT similar to 1.3 at 775 K for p-type and from ZT similar to 1.0 to ZT similar to 1.6 at 800 K for n-type, resulting in respective efficiencies (300-850 K) of eta > 13% and eta similar to 16%. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on Raman and Ni K-edge x-ray absorption investigations of a NiS2-xSex (with x = 0.00, 0.50/0.55, 0.60, and 1.20) pyrite family. The Ni K-edge absorption edge shows a systematic shift going from an insulating phase (x = 0.00 and 0.50) to a metallic phase (x = 0.60 and 1.20). The near-edge absorption features show a clear evolution with Se doping. The extended x-ray absorption fine structure data reveal the evolution of the local structure with Se doping which mainly governs the local disorder. We also describe the decomposition of the NiS2-xSex Raman spectra and investigate the weights of various phonon modes using Gaussian and Lorentzian profiles. The effectiveness of the fitting models in describing the data is evaluated by means of Bayes factor estimation. The Raman analysis clearly demonstrates the disorder effects due to Se alloying in describing the phonon spectra of NiS2-xSex pyrites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure and spectral properties of hexagonal NiS have been studied in the high temperature paramagnetic phase and low temperature anti-ferromagnetic phase. The calculations have been performed using charge self-consistent density-functional theory in local density approximation combined with dynamical mean-field theory (LDA+DMFT). The photoemission spectra (PES) and optical properties have been computed and compared with the experimental data. Our results show that the dynamical correlation effects are important to understand the spectral and optical properties of NiS. These effects have been analyzed in detail by means of the computed real and imaginary part of the self-energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the first STM evaluation of the Young's modulus (E) of nanoparticles (NPs) of different sizes. The sample deformation induced by tip-sample interaction has been determined using current-distance (I-Z) spectroscopy. As a result of tip-sample interaction, and the induced surface deformations, the I-z curves deviates from pure exponential dependence. Normally, in order to analyze the deformation quantitatively, the tip radius must be known. We show, that this necessity is eliminated by measuring the deformation on a substrate with a known Young's modulus (Au(111)) and estimating the tip radius, and afterwards, using the same tip (with a known radius) to measure the (unknown) Young's modulus of another sample (nanoparticles of CdS). The Young's modulus values found for 3 NP's samples of average diameters of 3.7, 6 and 7.5 nm, were E similar to 73%, 78% and 88% of the bulk value, respectively. These results are in a good agreement with the theoretically predicted reduction of the Young's modulus due to the changes in hydrostatic stresses which resulted from surface tension in nanoparticles with different sizes. Our calculation using third order elastic constants gives a reduction of E which scales linearly with 1/r (r is the NP's radius). This demonstrates the applicability of scanning tunneling spectroscopy for local mechanical characterization of nanoobjects. The method does not include a direct measurement of the tip-sample force but is rather based on the study of the relative elastic response. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unusual low-temperature magneto-resistance (MR) of ferromagnetic Sr2FeMoO6 polycrystals has been attributed to magnetically hard grain boundaries which act as spin valves. We detected the different magnetic hysteresis curves for the grains and the grain boundaries of polycrystalline Sr2FeMoO6 by utilizing the different probing depths of the different detection modes of x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD), namely, the total electron yield (TEY) mode (probing depth similar to 5 nm) and the total fluorescence yield (TFY) mode (probing depth similar to 100 nm). At 20 K, the magnetic coercivity detected in the TEY mode (H-c,H- TEY) was several times larger than that in the TFY mode (H-c,H- TFY), indicating harder ferromagnetism of the grain boundaries than that of the grains. At room temperature, the grain boundary magnetism became soft and H-c,H- TEY and H-c,H- TFY were nearly the same. From the line-shape analysis of the XAS and XMCD spectra, we found that in the grain boundary region the ferromagnetic component is dominated by Fe2+ or well-screened signals, while the non-magnetic component is dominated by Fe3+ or poorly screened signals. Copyright (C) EPLA, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we have synthesised carbon nanoparticles (CNPs) through a relatively simple process using a hydrocarbon precursor. These synthesised CNPs in the form of elongated spherules and/or agglomerates of 30-55 nm were further used as a support to anchor platinum nanoparticles. The broad light absorption (300-700 nm) and a facile charge transfer property of CNPs in addition to the plasmonic property of Pt make these platinized carbon nanostructures (CNPs/Pt) a promising candidate in photocatalytic water splitting. The photocatalytic activity was evaluated using ethanol as the sacrificial donor. The photocatalyst has shown remarkable activity for hydrogen production under UV-visible light while retaining its stability for nearly 70 h. The broadband absorption of CNPs, along with the Surface Plasmon Resonance (SPR) effect of PtNPs singly and in composites has pronounced influence on the photocatalytic activity, which has not been explored earlier. The steady rate of hydrogen was observed to be 20 mu mol h(-1) with an exceptional cumulative hydrogen yield of 32.16 mmol h(-1) g(-1) observed for CNPs/Pt, which is significantly higher than that reported for carbon-based systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous W-S-N in the form of thin films has been identified experimentally as an ultra-low friction material, enabling easy sliding by the formation of a WS2 tribofilm. However, the atomic-level structure and bonding arrangements in amorphous W-S-N, which give such optimum conditions for WS2 formation and ultra-low friction, are not known. In this study, amorphous thin films with up to 37 at.% N are deposited, and experimental as well as state-of-the-art ab initio techniques are employed to reveal the complex structure of W-S-N at the atomic level. Excellent agreement between experimental and calculated coordination numbers and bond distances is demonstrated. Furthermore, the simulated structures are found to contain N bonded in molecular form, i.e. N-2, which is experimentally confirmed by near edge X-ray absorption fine structure and X-ray photoelectron spectroscopy analysis. Such N-2 units are located in cages in the material, where they are coordinated mainly by S atoms. Thus this ultra-low friction material is shown to be a complex amorphous network of W, S and N atoms, with easy access to W and S for continuous formation of WS2 in the contact region, and with the possibility of swift removal of excess nitrogen present as N-2 molecules. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.