798 resultados para computer science education
Resumo:
Taiwan is a rapidly changing society, facing many challenges. In this state of flux, it is important to step back and see the big picture. The NewFutures 2000 conference, which commemorated fifty years of the of Tamkang University, in TamShui (the northernmost tip), Taiwan (Republic of China) and was held on 5–7 November 2000, gave Taiwanese an opportunity to gain just such a perspective. The ostensible aim of the conference was to explore ‘transformations in education, culture and technology’. But numerous perspectives and academic approaches were explored; predictions, normative visions, probable futures, alternative futures, ethical futures, epistemological re-constructions, studies and deconstruction’s of images of the future, myth and worldview—all received attention, sometimes overwhelming the participants with contradictory and overbearing ideas. [introduction]
Resumo:
Context-based chemistry education aims to improve student interest and motivation in chemistry by connecting canonical chemistry concepts with real-world contexts. Implementation of context-based chemistry programmes began 20 years ago in an attempt to make the learning of chemistry meaningful for students. This paper reviews such programmes through empirical studies on six international courses, ChemCom (USA), Salters (UK), Industrial Science (Israel), Chemie im Kontext (Germany), Chemistry in Practice (The Netherlands) and PLON (The Netherlands). These studies are categorised through emergent characteristics of: relevance, interest/attitudes motivation and deeper understanding. These characteristics can be found to an extent in a number of other curricular initiatives, such as science-technology-society approaches and problem-based learning or project based science, the latter of which often incorporates an inquiry-based approach to science education. These initiatives in science education are also considered with a focus on the characteristics of these approaches that are emphasised in context-based education. While such curricular studies provide a starting point for discussing context-based approaches in chemistry, to advance our understanding of how students connect canonical science concepts with the real-world context, a new theoretical framework is required. A dialectical sociocultural framework originating in the work of Vygotsky is used as a referent for analysing the complex human interactions that occur in context-based classrooms, providing teachers with recent information about the pedagogical structures and resources that afford students the agency to learn.
Resumo:
The literature supporting the notion that active, student-centered learning is superior to passive, teacher-centered instruction is encyclopedic (Bonwell & Eison, 1991; Bruning, Schraw, & Ronning, 1999; Haile, 1997a, 1997b, 1998; Johnson, Johnson, & Smith, 1999). Previous action research demonstrated that introducing a learning activity in class improved the learning outcomes of students (Mejias, 2010). People acquire knowledge and skills through practice and reflection, not by watching and listening to others telling them how to do something. In this context, this project aims to find more insights about the level of interactivity in the curriculum a class should have and its alignment with assessment so the intended learning outcomes (ILOs) are achieved. In this project, interactivity is implemented in the form of problem- based learning (PBL). I present the argument that a more continuous formative feedback when implemented with the correct amount of PBL stimulates student engagement bringing enormous benefits to student learning. Different levels of practical work (PBL) were implemented together with two different assessment approaches in two subjects. The outcomes were measured using qualitative and quantitative data to evaluate the levels of student engagement and satisfaction in the terms of ILOs.
Resumo:
In the university education arena, it is becoming apparent that traditional methods of conducting classes are not the most effective ways to achieve desired learning outcomes. The traditional class/method involves the instructor verbalizing information for passive, note-taking students who are assumed to be empty receptacles waiting to be filled with knowledge. This method is limited in its effectiveness, as the flow of information is usually only in one direction. Furthermore, “It has been demonstrated that students in many cases can recite and apply formulas in numerical problems, but the actual meaning and understanding of the concept behind the formula is not acquired (Crouch & Mazur)”. It is apparent that memorization is the main technique present in this approach. A more effective method of teaching involves increasing the students’ level of activity during, and hence their involvement in the learning process. This technique stimulates self- learning and assists in keeping these students’ levels of concentration more uniform. In this work, I am therefore interested in studying the influence of a particular TLA on students’ learning-outcomes. I want to foster high-level understanding and critical thinking skills using active learning (Silberman, 1996) techniques. The TLA in question aims to promote self-study by students and to expose them to a situation where their learning-outcomes can be tested. The motivation behind this activity is based on studies which suggest that some sensory modalities are more effective than others. Using various instruments for data collection and by means of a thorough analysis I present evidence of the effectiveness of this action research project which aims to improve my own teaching practices, with the ultimate goal of enhancing student’s learning.
Resumo:
The quest for the achievement of informed nature of science (NOS) views for all learners continues to inspire science educators to seek out effective instructional interventions to aid in the development of learners’ NOS views. Despite the extensive amount of research conducted in the field, the development of informed NOS views has been difficult to achieve, with many studies reporting difficulties in changing learners’ NOS views. Can engaging learners in argumentation lead to improvements in their NOS views? This review answers this question by examining studies which have explored NOS and argumentation in science education. The review also outlines a rationale for incorporating argumentation in science education, together with a brief overview of important recent studies in the field. Implications drawn from this review suggest that the incorporation of explicit NOS and argumentation instruction, together with consideration of various contextual, task-specific and personal factors which could mediate learners’ NOS views and engagement in argumentation, could lead to improvements in learners’ views of NOS.
Resumo:
Curriculum developers and researchers have promoted context based programmes to arrest waning student interest and participation in the enabling sciences at high school and university. Context-based programmes aim for connections between scientific discourse and real-world contexts to elevate curricular relevance without diminishing conceptual understanding. Literature relating to context-based approaches to learning will be reviewed in this chapter. In particular, international trends in curricular development and results from evaluations of major projects (e.g. PLON, Salters Advanced Chemistry, ChemCom) will be highlighted. Research projects that explore context-based interventions focusing on such outcomes as student interest, perceived relevance and conceptual understanding also will feature in the review. The chapter culminates with a discussion of current context-based research that interprets classroom actions from a dialectical socio-cultural framework, and identifies possible new directions for research.
Resumo:
Individual science teachers who have inspired colleagues to transform their classroom praxis have been labelled transformational leaders. As the notion of distributed leadership became more accepted in the educational literature, the focus on the individual teacher-leader shifted to the study of leadership praxis both by individuals (whoever they might be) and by collectives within schools and science classrooms. This review traces the trajectory of leadership research, in the context of learning and teaching science, from an individual focus to a dialectical relationship between individual and collective praxis. The implications of applying an individual-collective perspective to praxis for teachers, students and their designated leaders are discussed.
Resumo:
Existing secure software development principles tend to focus on coding vulnerabilities, such as buffer or integer overflows, that apply to individual program statements, or issues associated with the run-time environment, such as component isolation. Here we instead consider software security from the perspective of potential information flow through a program’s object-oriented module structure. In particular, we define a set of quantifiable "security metrics" which allow programmers to quickly and easily assess the overall security of a given source code program or object-oriented design. Although measuring quality attributes of object-oriented programs for properties such as maintainability and performance has been well-covered in the literature, metrics which measure the quality of information security have received little attention. Moreover, existing securityrelevant metrics assess a system either at a very high level, i.e., the whole system, or at a fine level of granularity, i.e., with respect to individual statements. These approaches make it hard and expensive to recognise a secure system from an early stage of development. Instead, our security metrics are based on well-established compositional properties of object-oriented programs (i.e., data encapsulation, cohesion, coupling, composition, extensibility, inheritance and design size), combined with data flow analysis principles that trace potential information flow between high- and low-security system variables. We first define a set of metrics to assess the security quality of a given object-oriented system based on its design artifacts, allowing defects to be detected at an early stage of development. We then extend these metrics to produce a second set applicable to object-oriented program source code. The resulting metrics make it easy to compare the relative security of functionallyequivalent system designs or source code programs so that, for instance, the security of two different revisions of the same system can be compared directly. This capability is further used to study the impact of specific refactoring rules on system security more generally, at both the design and code levels. By measuring the relative security of various programs refactored using different rules, we thus provide guidelines for the safe application of refactoring steps to security-critical programs. Finally, to make it easy and efficient to measure a system design or program’s security, we have also developed a stand-alone software tool which automatically analyses and measures the security of UML designs and Java program code. The tool’s capabilities are demonstrated by applying it to a number of security-critical system designs and Java programs. Notably, the validity of the metrics is demonstrated empirically through measurements that confirm our expectation that program security typically improves as bugs are fixed, but worsens as new functionality is added.
Resumo:
In this paper, we present an account of children's interactions with a mobile technology prototype within the school context. The noise detectives trial was conducted in a school setting with the aim of better understanding the role of mobile resources as mediators within science and environmental learning activities. Over 80 children, aged between 10 and 12, completed an outdoor data-gathering activity, using a mobile learning prototype that included paper and software components. They measured and recorded noise levels in various locations throughout the school. We analysed the activity to determine how the components of the prototype were integrated into the learning activity, and to identify differences in behaviour that resulted from using these components. We present design implications that resulted from observed differences in prototype use and appropriation.
Resumo:
Design Science Research (DSR) has emerged as an important approach in Information Systems (IS) research, evidenced by the plethora of recent related articles in recognized IS outlets. Nonetheless, discussion continues on the value of DSR for IS and how to conduct strong DSR, with further discussion necessary to better position DSR as a mature and stable research paradigm appropriate for IS. This paper contributes to address this need, by providing a comprehensive conceptual and argumentative positioning of DSR relative to the core of IS. This paper seeks to argue the relevance of DSR as a paradigm that addresses the core of IS discipline well. Here we use the framework defined by Wand and Weber, to position what the core of IS is.
Resumo:
This report describes the Get Into Vocational Education (GIVE) pilot project run at Gladstone Central State School from September to December 2010. The report describes the aims, budget, and timeline of the project and its findings in relation to each of the three major objectives of the project, namely (a) build awareness of, interest in, and familiarity with trades as a future vocation and opportunity for advancement; (b) enhance literacy, numeracy and science knowledge and performance; and (c) provide motivation and engagement to stay on at school and build towards a productive future. The clear findings of the GIVE Gladstone Year 4 pilot project are that, for students at risk in terms of school attendance, engagement and learning: (1) awareness of trades, literacy, mathematics and science knowledge, and motivation and engagement all improve and, in most cases, dramatically improve, in the GIVE structure; (2) this improvement involves transfer to situations and concepts not directly addressed in the project; and (3) the crucial factor in the GIVE structure that gives the improvement is the integration of classroom work with trades experiences and not the classroom and trades experiences themselves (although it is better if these are good).
Resumo:
This report describes the Get Into Vocational Education (GIVE) pilot project run in the Rockhampton Region at two schools in 2011. The report includes a description of the project, including its aims, budget, and timeline; and the findings in relation to each of the three major objectives of the project, namely (a) build awareness of, interest in, and familiarity with, trades as a future vocation and opportunity for advancement; (b) enhance literacy, numeracy and science knowledge and performance; and (c) provide motivation and engagement to stay on at school and build towards a productive future. The clear findings of the GIVE Rockhampton Region pilot project are that, for students at risk in terms of school attendance, engagement and learning: (1) awareness of trade practices in horticulture, hospitality, retail, and design and engineering, literacy, mathematics and science knowledge, and motivation and engagement all improve and, in most cases, dramatically improve, in the GIVE structure; and (2) the crucial factor in the GIVE structure that gives the improvement is the integration of classroom work with trades experiences and not the classroom and trades experiences themselves (although it is better if these are good).
Resumo:
The integration of unmanned aircraft into civil airspace is a complex issue. One key question is whether unmanned aircraft can operate just as safely as their manned counterparts. The absence of a human pilot in unmanned aircraft automatically points to a deficiency that is the lack of an inherent see-and-avoid capability. To date, regulators have mandated that an “equivalent level of safety” be demonstrated before UAVs are permitted to routinely operate in civil airspace. This chapter proposes techniques, methods, and hardware integrations that describe a “sense-and-avoid” system designed to address the lack of a see-and-avoid capability in UAVs.
Resumo:
This paper reports on an experiment that was conducted to determine the extent to which group dynamics impacts on the effectiveness of software development teams. The experiment was conducted on software engineering project students at the Queensland University of Technology (QUT).