943 resultados para clusters of galaxies
Resumo:
Fourier transform infrared (FTIR) spectroscopic imaging using a focal plane array detector has been used to study atherosclerotic arteries with a spatial resolution of 3-4 mum, i.e., at a level that is comparable with cellular dimensions. Such high spatial resolution is made possible using a micro-attenuated total reflection (ATR) germanium objective with a high refractive index and therefore high numerical aperture. This micro-ATR approach has enabled small structures within the vessel wall to be imaged for the first time by FTIR. Structures observed include the elastic lamellae of the tunica media and a heterogeneous distribution of small clusters of cholesterol esters within an atherosclerotic lesion, which may correspond to foam cells. A macro-ATR imaging method was also applied, which involves the use of a diamond macro-ATR accessory. This study of atherosclerosis is presented as an illustrative example of the wider potential of these A TR imaging approaches for cardiovascular medicine and biomedical applications. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Recent biochemical studies have identified high molecular complexes of the HIV Gag precursor in the cytosol of infected cells. Using immunoelectron microscopy we studied the time course of the synthesis and assembly of a HIV Gag precursor protein (pr55gag) in Sf9 cells infected with recombinant baculovirus expressing the HIV gag gene. We also immunolabeled for pr55gag human T4 cells acutely or chronically infected with HIV-1. In Sf9 cells, the time course study showed that the first Gag protein appeared in the cytoplasm at 28-30 h p.i. and that budding started 6-8 h later. Colloidal gold particles, used to visualize the Gag protein, were first scattered randomly throughout the cytoplasm, but soon clusters representing 100 to 1000 copies of pr55gag were also observed. By contrast, in cells with budding or released virus-like particles the cytoplasm was virtually free of gold particles while the released virus-like particles were heavily labeled. Statistical analysis showed that between 80 and 90% of the gold particles in the cytoplasm were seen as singles, as doublets, or in small groups of up to five particles probably representing small oligomers. Clusters of gold particles were also observed in acutely infected lymphocytes as well as in multinuclear cells of chronically infected cultures of T4 cells. In a few cases small aggregates of gold particles were found in the nuclei of T4 lymphocytes. These observations suggest that the Gag polyprotein forms small oligomers in the cytoplasm of expressing cells but that assembly into multimeric complexes takes place predominantly at the plasma membrane. Large accumulations of Gag protein in the cytoplasm may represent misfolded molecules destined for degradation.
Resumo:
Changes in the theological properties during crystallisation and in the crystal size and morphology of blends containing rapeseed oil with varying percentages of palm stearin (POs) and palm olein (POf) have been studied. The crystals formed from all three blends were studied by confocal laser scanning microscopy, light microscopy and environmental scanning electron microscopy, which revealed the development of clusters of 3-5 individual elementary "spherulites" in the early stages of crystallisation. The saturated triacylglycerol content of the solid crystals separated at the onset of crystallisation was much greater than that in the total fat. Fat blends with a higher content of palm stearin had a more rapid nucleation rate when observed by light microscopy, and this caused an earlier change in the rheological properties of the fat during crystallisation. Using a low torque amplitude (0.005 Pa, which was within the linear viscoelastic region of all samples studied) and a frequency of 1 Hz, the viscoelastic properties of melted fat during cooling were studied. All samples, prior to crystallisation, showed weak viscoelastic liquid behaviour (G '', loss modulus >G', storage modulus). After crystallisation a more "solid like" behaviour was observed (G' similar to or greater than G ''). The blend having the highest concentration of POs was found to have the earliest onset of crystallisation (27% w/w POs; 12 mins, 22% w/w POs; 13.5 mins, 17% w/w POs, 15 mins, respectively). However, there were no significant differences in the time to the point when G' became greater than G' among the three blends. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The M protein of coronavirus plays a central role in virus assembly, turning cellular membranes into workshops where virus and host factors come together to make new virus particles. We investigated how M structure and organization is related to virus shape and size using cryo-electron microscopy, tomography and statistical analysis. We present evidence that suggests M can adopt two conformations and that membrane curvature is regulated by one M conformer. Elongated M protein is associated with rigidity, clusters of spikes and a relatively narrow range of membrane curvature. In contrast, compact M protein is associated with flexibility and low spike density. Analysis of several types of virus-like particles and virions revealed that S protein, N protein and genomic RNA each help to regulate virion size and variation, presumably through interactions with M. These findings provide insight into how M protein functions to promote virus assembly.
Resumo:
Clusters of computers can be used together to provide a powerful computing resource. Large Monte Carlo simulations, such as those used to model particle growth, are computationally intensive and take considerable time to execute on conventional workstations. By spreading the work of the simulation across a cluster of computers, the elapsed execution time can be greatly reduced. Thus a user has apparently the performance of a supercomputer by using the spare cycles on other workstations.
Resumo:
The crystallization behaviour of a series of random copolymers of varying chemical composition is reported. For polymers containing a high proportion of alternating rigid aromatic units and flexible spacers, conventional liquid crystalline and crystalline phase behaviour is observed. The introduction of a substantial fraction of a second shorter rigid unit containing side-chains leads to a broad endotherm in the d.s.c. scan covering some 150°C. Subsequent isothermal crystallization at any point within the broad endotherm leads to the generation of sharp endotherms at temperatures just above the recrystallization temperature. We attribute this behaviour to the crystallization of clusters of molecules containing similar random sequences. Such crystals are non-periodic along the chain direction.
Resumo:
Recently major processor manufacturers have announced a dramatic shift in their paradigm to increase computing power over the coming years. Instead of focusing on faster clock speeds and more powerful single core CPUs, the trend clearly goes towards multi core systems. This will also result in a paradigm shift for the development of algorithms for computationally expensive tasks, such as data mining applications. Obviously, work on parallel algorithms is not new per se but concentrated efforts in the many application domains are still missing. Multi-core systems, but also clusters of workstations and even large-scale distributed computing infrastructures provide new opportunities and pose new challenges for the design of parallel and distributed algorithms. Since data mining and machine learning systems rely on high performance computing systems, research on the corresponding algorithms must be on the forefront of parallel algorithm research in order to keep pushing data mining and machine learning applications to be more powerful and, especially for the former, interactive. To bring together researchers and practitioners working in this exciting field, a workshop on parallel data mining was organized as part of PKDD/ECML 2006 (Berlin, Germany). The six contributions selected for the program describe various aspects of data mining and machine learning approaches featuring low to high degrees of parallelism: The first contribution focuses the classic problem of distributed association rule mining and focuses on communication efficiency to improve the state of the art. After this a parallelization technique for speeding up decision tree construction by means of thread-level parallelism for shared memory systems is presented. The next paper discusses the design of a parallel approach for dis- tributed memory systems of the frequent subgraphs mining problem. This approach is based on a hierarchical communication topology to solve issues related to multi-domain computational envi- ronments. The forth paper describes the combined use and the customization of software packages to facilitate a top down parallelism in the tuning of Support Vector Machines (SVM) and the next contribution presents an interesting idea concerning parallel training of Conditional Random Fields (CRFs) and motivates their use in labeling sequential data. The last contribution finally focuses on very efficient feature selection. It describes a parallel algorithm for feature selection from random subsets. Selecting the papers included in this volume would not have been possible without the help of an international Program Committee that has provided detailed reviews for each paper. We would like to also thank Matthew Otey who helped with publicity for the workshop.
Resumo:
Currently, the Genomic Threading Database (GTD) contains structural assignments for the proteins encoded within the genomes of nine eukaryotes and 101 prokaryotes. Structural annotations are carried out using a modified version of GenTHREADER, a reliable fold recognition method. The Gen THREADER annotation jobs are distributed across multiple clusters of processors using grid technology and the predictions are deposited in a relational database accessible via a web interface at http://bioinf.cs.ucl.ac.uk/GTD. Using this system, up to 84% of proteins encoded within a genome can be confidently assigned to known folds with 72% of the residues aligned. On average in the GTD, 64% of proteins encoded within a genome are confidently assigned to known folds and 58% of the residues are aligned to structures.
Resumo:
Whole-genome sequencing offers new insights into the evolution of bacterial pathogens and the etiology of bacterial disease. Staph- ylococcus aureus is a major cause of bacteria-associated mortality and invasive disease and is carried asymptomatically by 27% of adults. Eighty percent of bacteremias match the carried strain. How- ever, the role of evolutionary change in the pathogen during the progression from carriage to disease is incompletely understood. Here we use high-throughput genome sequencing to discover the genetic changes that accompany the transition from nasal carriage to fatal bloodstream infection in an individual colonized with meth- icillin-sensitive S. aureus. We found a single, cohesive population exhibiting a repertoire of 30 single-nucleotide polymorphisms and four insertion/deletion variants. Mutations accumulated at a steady rate over a 13-mo period, except for a cluster of mutations preceding the transition to disease. Although bloodstream bacteria differed by just eight mutations from the original nasally carried bacteria, half of those mutations caused truncation of proteins, including a prema- ture stop codon in an AraC-family transcriptional regulator that has been implicated in pathogenicity. Comparison with evolution in two asymptomatic carriers supported the conclusion that clusters of pro- tein-truncating mutations are highly unusual. Our results demon- strate that bacterial diversity in vivo is limited but nonetheless detectable by whole-genome sequencing, enabling the study of evolutionary dynamics within the host. Regulatory or structural changes that occur during carriage may be functionally important for pathogenesis; therefore identifying those changes is a crucial step in understanding the biological causes of invasive bacterial disease.
Resumo:
Grassroots innovations emerge as networks generating innovative solutions for climate change adaptation and mitigation. However, it is unclear if grassroots innovations can be successful in responding to climate change. Little evidence exists on replication, international comparisons are rare, and research tends to overlook discontinued responses in favour of successful ones. We take the Transition Movement as a case study of a rapidly spreading transnational grassroots network, and include both active and non-active local transition initiatives. We investigate the replication of grassroots innovations in different contexts with the aim to uncover general patterns of success and failure, and identify questions for future research. An online survey was carried out in 23 countries (N=276). The data analysis entailed testing the effect of internal and contextual factors of success as drawn from the existing literature, and the identification of clusters of transition initiatives with similar internal and contextual factor configurations. Most transition initiatives consider themselves successful. Success is defined along the lines of social connectivity and empowerment, and external environmental impact. We find that less successful transition initiatives might underestimate the importance of contextual factors and material resources in influencing success. We also find that their diffusion is linked to the combination of local-global learning processes, and that there is an incubation period during which a transition initiative is consolidated. Transition initiatives seem capable of generalising organisational principles derived from unique local experiences that seem to be effective in other local contexts. However, the geographical locations matter with regard to where transition initiatives take root and the extent of their success, and ‘place attachment’ may have a role in the diffusion of successful initatives. We suggest that longitudinal comparative studies can advance our understanding in this regard, as well as inform the changing nature of the definition of success at different stages of grassroots innovation development, and the dynamic nature of local and global linkages.
Resumo:
This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts.
Resumo:
This research explores whether patterns of typographic differentiation influence readers’ impressions of documents. It develops a systematic approach to typographic investigation that considers relationships between different kinds of typographic attributes, rather than testing the influence of isolated variables. An exploratory study using multiple sort tasks and semantic differential scales identifies that readers form a variety of impressions in relation to how typographic elements are differentiated in document design. Building on the findings of the exploratory study and analysis of a sample of magazines, the research describes three patterns of typographic differentiation: high, moderate, and low. Each pattern comprises clusters of typographic attributes and organisational principles that are articulated in relation to a specified level of typographic differentiation (amplified, medium, or subtle). The patterns are applied to two sets of controlled test material. Using this purposely-designed material, the influence of patterns of typographic differentiation on readers’ impressions of documents is explored in a repertory grid analysis and a paired comparison procedure. The results of these studies indicate that patterns of typographic differentiation consistently shape readers’ impressions of documents, influencing judgments of credibility, document address, and intended readership; and suggesting particular kinds of engagement and genre associations. For example, high differentiation documents are likely to be considered casual, sensationalist, and young; moderate differentiation documents are most likely to be seen as formal and serious; and low differentiation examples are considered calm. Typographic meaning is shown to be created through complex, yet systematic, interrelationships rather than reduced to a linear model of increasing or decreasing variation. The research provides a way of describing typographic articulation that has application across a variety of disciplines and design practice. In particular, it illuminates the ways in which typographic presentation is meaningful to readers, providing knowledge that document producers can use to communicate more effectively.
Resumo:
This study explores how the typographic layout of information influences readers' impressions of magazine contents pages. Thirteen descriptors were used in a paired comparison procedure that assessed whether participants' rhetorical impressions of a set of six controlled documents change in relation to variations in layout. The combinations of layout attributes tested were derived from the structural attributes associated with three patterns of typographic differentiation (high, moderate, and low) described in a previous study (see Moys, 2014). The content and the range of stylistic attributes applied to the test material were controlled in order to focus on layout attributes. Triangulation of the quantitative and qualitative data indicates that, even within the experimental confines of limited stylistic differentiation, the layout attributes associated with patterns of high, moderate, and low typographic differentiation do influence readers' rhetorical judgments. In addition, the findings emphasize the importance of considering inter-relationships between clusters of typographic attributes rather than testing isolated variables.
Resumo:
The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development.
Resumo:
The classification of galaxies as star forming or active is generally done in the ([O III]/H beta, [N II]/H alpha) plane. The Sloan Digital Sky Survey (SDSS) has revealed that, in this plane, the distribution of galaxies looks like the two wings of a seagull. Galaxies in the right wing are referred to as Seyfert/LINERs, leading to the idea that non-stellar activity in galaxies is a very common phenomenon. Here, we argue that a large fraction of the systems in the right wing could actually be galaxies which stopped forming stars. The ionization in these `retired` galaxies would be produced by hot post-asymptotic giant branch stars and white dwarfs. Our argumentation is based on a stellar population analysis of the galaxies via our STARLIGHT code and on photoionization models using the Lyman continuum radiation predicted for this population. The proportion of LINER galaxies that can be explained in such a way is, however, uncertain. We further show how observational selection effects account for the shape of the right wing. Our study suggests that nuclear activity may not be as common as thought. If retired galaxies do explain a large part of the seagull`s right wing, some of the work concerning nuclear activity in galaxies, as inferred from SDSS data, will have to be revised.