909 resultados para classification and regression trees


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a survey of evolutionary algorithms that are designed for decision-tree induction. In this context, most of the paper focuses on approaches that evolve decision trees as an alternate heuristics to the traditional top-down divide-and-conquer approach. Additionally, we present some alternative methods that make use of evolutionary algorithms to improve particular components of decision-tree classifiers. The paper's original contributions are the following. First, it provides an up-to-date overview that is fully focused on evolutionary algorithms and decision trees and does not concentrate on any specific evolutionary approach. Second, it provides a taxonomy, which addresses works that evolve decision trees and works that design decision-tree components by the use of evolutionary algorithms. Finally, a number of references are provided that describe applications of evolutionary algorithms for decision-tree induction in different domains. At the end of this paper, we address some important issues and open questions that can be the subject of future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Despite the high prevalence of substance abuse and mood disorders among victimized children and adolescents, few studies have investigated the association of these disorders with treatment adherence, represented by numbers of visits per month and treatment duration. We aimed to investigate the effects of substance abuse and mood disorders on treatment adherence and duration in a special programfor victimized children in Sao Paulo, Brazil. METHODS: A total of 351 participants were evaluated for psychiatric disorders and classified into one of five groups: mood disorders alone; substance abuse disorders alone; mood and substance abuse disorders; other psychiatric disorders; no psychiatric disorders. The associations between diagnostic classification and adherence to treatment and the duration of program participation were tested with logistic regression and survival analysis, respectively. RESULTS: Children with mood disorders alone had the highest rate of adherence (79.5%); those with substance abuse disorders alone had the lowest (40%); and those with both disorders had an intermediate rate of adherence (50%). Those with other psychiatric disorders and no psychiatric disorders also had high rates of adherence (75.6% and 72.9%, respectively). Living with family significantly increased adherence for children with substance abuse disorders but decreased adherence for those with no psychiatric disorders. The diagnostic correlates of duration of participation were similar to those for adherence. CONCLUSIONS: Mood and substance abuse disorders were strong predictive factors for treatment adherence and duration, albeit in opposite directions. Living with family seems to have a positive effect on treatment adherence for patients with substance abuse disorders. More effective treatment is needed for victimized substance-abusing youth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Despite the high prevalence of substance abuse and mood disorders among victimized children and adolescents, few studies have investigated the association of these disorders with treatment adherence, represented by numbers of visits per month and treatment duration. We aimed to investigate the effects of substance abuse and mood disorders on treatment adherence and duration in a special program for victimized children in São Paulo, Brazil. METHODS: A total of 351 participants were evaluated for psychiatric disorders and classified into one of five groups: mood disorders alone; substance abuse disorders alone; mood and substance abuse disorders; other psychiatric disorders; no psychiatric disorders. The associations between diagnostic classification and adherence to treatment and the duration of program participation were tested with logistic regression and survival analysis, respectively. RESULTS: Children with mood disorders alone had the highest rate of adherence (79.5%); those with substance abuse disorders alone had the lowest (40%); and those with both disorders had an intermediate rate of adherence (50%). Those with other psychiatric disorders and no psychiatric disorders also had high rates of adherence (75.6% and 72.9%, respectively). Living with family significantly increased adherence for children with substance abuse disorders but decreased adherence for those with no psychiatric disorders. The diagnostic correlates of duration of participation were similar to those for adherence. CONCLUSIONS: Mood and substance abuse disorders were strong predictive factors for treatment adherence and duration, albeit in opposite directions. Living with family seems to have a positive effect on treatment adherence for patients with substance abuse disorders. More effective treatment is needed for victimized substance-abusing youth

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear Magnetic Resonance (NMR) is a branch of spectroscopy that is based on the fact that many atomic nuclei may be oriented by a strong magnetic field and will absorb radiofrequency radiation at characteristic frequencies. The parameters that can be measured on the resulting spectral lines (line positions, intensities, line widths, multiplicities and transients in time-dependent experi-ments) can be interpreted in terms of molecular structure, conformation, molecular motion and other rate processes. In this way, high resolution (HR) NMR allows performing qualitative and quantitative analysis of samples in solution, in order to determine the structure of molecules in solution and not only. In the past, high-field NMR spectroscopy has mainly concerned with the elucidation of chemical structure in solution, but today is emerging as a powerful exploratory tool for probing biochemical and physical processes. It represents a versatile tool for the analysis of foods. In literature many NMR studies have been reported on different type of food such as wine, olive oil, coffee, fruit juices, milk, meat, egg, starch granules, flour, etc using different NMR techniques. Traditionally, univariate analytical methods have been used to ex-plore spectroscopic data. This method is useful to measure or to se-lect a single descriptive variable from the whole spectrum and , at the end, only this variable is analyzed. This univariate methods ap-proach, applied to HR-NMR data, lead to different problems due especially to the complexity of an NMR spectrum. In fact, the lat-ter is composed of different signals belonging to different mole-cules, but it is also true that the same molecules can be represented by different signals, generally strongly correlated. The univariate methods, in this case, takes in account only one or a few variables, causing a loss of information. Thus, when dealing with complex samples like foodstuff, univariate analysis of spectra data results not enough powerful. Spectra need to be considered in their wholeness and, for analysing them, it must be taken in consideration the whole data matrix: chemometric methods are designed to treat such multivariate data. Multivariate data analysis is used for a number of distinct, differ-ent purposes and the aims can be divided into three main groups: • data description (explorative data structure modelling of any ge-neric n-dimensional data matrix, PCA for example); • regression and prediction (PLS); • classification and prediction of class belongings for new samples (LDA and PLS-DA and ECVA). The aim of this PhD thesis was to verify the possibility of identify-ing and classifying plants or foodstuffs, in different classes, based on the concerted variation in metabolite levels, detected by NMR spectra and using the multivariate data analysis as a tool to inter-pret NMR information. It is important to underline that the results obtained are useful to point out the metabolic consequences of a specific modification on foodstuffs, avoiding the use of a targeted analysis for the different metabolites. The data analysis is performed by applying chemomet-ric multivariate techniques to the NMR dataset of spectra acquired. The research work presented in this thesis is the result of a three years PhD study. This thesis reports the main results obtained from these two main activities: A1) Evaluation of a data pre-processing system in order to mini-mize unwanted sources of variations, due to different instrumental set up, manual spectra processing and to sample preparations arte-facts; A2) Application of multivariate chemiometric models in data analy-sis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an update on clinical evaluation, staging, classification and treatment of canal cholesteatoma, including a meta-analysis of clinical data of the last 30 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of antibiotics is highest in primary care and directly associated with antibiotic resistance in the community. We assessed regional variations in antibiotic use in primary care in Switzerland and explored prescription patterns in relation to the use of point of care tests. Defined daily doses of antibiotics per 1000 inhabitants (DDD(1000pd) ) were calculated for the year 2007 from reimbursement data of the largest Swiss health insurer, based on the anatomic therapeutic chemical classification and the DDD methodology recommended by WHO. We present ecological associations by use of descriptive and regression analysis. We analysed data from 1 067 934 adults, representing 17.1% of the Swiss population. The rate of outpatient antibiotic prescriptions in the entire population was 8.5 DDD(1000pd) , and varied between 7.28 and 11.33 DDD(1000pd) for northwest Switzerland and the Lake Geneva region. DDD(1000pd) for the three most prescribed antibiotics were 2.90 for amoxicillin and amoxicillin-clavulanate, 1.77 for fluoroquinolones, and 1.34 for macrolides. Regions with higher DDD(1000pd) showed higher seasonal variability in antibiotic use and lower use of all point of care tests. In regression analysis for each class of antibiotics, the use of any point of care test was consistently associated with fewer antibiotic prescriptions. Prescription rates of primary care physicians showed variations between Swiss regions and were lower in northwest Switzerland and in physicians using point of care tests. Ecological studies are prone to bias and whether point of care tests reduce antibiotic use has to be investigated in pragmatic primary care trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP), microsatellite instability (MSI), KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT) and classifies tumors into five subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: Three hundred two patients were included in this study. Molecular analysis was performed for five CIMP-related promoters (CRABP1, MLH1, p16INK4a, CACNA1G, NEUROG1), MGMT, MSI, KRAS, and BRAF. Methylation in at least 4 promoters or in one to three promoters was considered CIMP-high and CIMP-low (CIMP-H/L), respectively. Results: CIMP-H, CIMP-L, and CIMP-negative were found in 7.1, 43, and 49.9% cases, respectively. One hundred twenty-three tumors (41%) could not be classified into any one of the proposed molecular subgroups, including 107 CIMP-L, 14 CIMP-H, and two CIMP-negative cases. The 10 year survival rate for CIMP-high patients [22.6% (95%CI: 7-43)] was significantly lower than for CIMP-L or CIMP-negative (p = 0.0295). Only the combined analysis of BRAF and CIMP (negative versus L/H) led to distinct prognostic subgroups. Conclusion: Although CIMP status has an effect on outcome, our results underline the need for standardized definitions of low- and high-level CIMP, which clearly hinders an effective prognostic and molecular classification of colorectal cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the Model for Outcome Classification in Health Promotion and Prevention adopted by Health Promotion Switzerland (SMOC, Swiss Model for Outcome Classification) and the process of its development. The context and method of model development, and the aim and objectives of the model are outlined. Preliminary experience with application of the model in evaluation planning and situation analysis is reported. On the basis of an extensive literature search, the model is situated within the wider international context of similar efforts to meet the challenge of developing tools to assess systematically the activities of health promotion and prevention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background mortality is an essential component of any forest growth and yield model. Forecasts of mortality contribute largely to the variability and accuracy of model predictions at the tree, stand and forest level. In the present study, I implement and evaluate state-of-the-art techniques to increase the accuracy of individual tree mortality models, similar to those used in many of the current variants of the Forest Vegetation Simulator, using data from North Idaho and Montana. The first technique addresses methods to correct for bias induced by measurement error typically present in competition variables. The second implements survival regression and evaluates its performance against the traditional logistic regression approach. I selected the regression calibration (RC) algorithm as a good candidate for addressing the measurement error problem. Two logistic regression models for each species were fitted, one ignoring the measurement error, which is the “naïve” approach, and the other applying RC. The models fitted with RC outperformed the naïve models in terms of discrimination when the competition variable was found to be statistically significant. The effect of RC was more obvious where measurement error variance was large and for more shade-intolerant species. The process of model fitting and variable selection revealed that past emphasis on DBH as a predictor variable for mortality, while producing models with strong metrics of fit, may make models less generalizable. The evaluation of the error variance estimator developed by Stage and Wykoff (1998), and core to the implementation of RC, in different spatial patterns and diameter distributions, revealed that the Stage and Wykoff estimate notably overestimated the true variance in all simulated stands, but those that are clustered. Results show a systematic bias even when all the assumptions made by the authors are guaranteed. I argue that this is the result of the Poisson-based estimate ignoring the overlapping area of potential plots around a tree. Effects, especially in the application phase, of the variance estimate justify suggested future efforts of improving the accuracy of the variance estimate. The second technique implemented and evaluated is a survival regression model that accounts for the time dependent nature of variables, such as diameter and competition variables, and the interval-censored nature of data collected from remeasured plots. The performance of the model is compared with the traditional logistic regression model as a tool to predict individual tree mortality. Validation of both approaches shows that the survival regression approach discriminates better between dead and alive trees for all species. In conclusion, I showed that the proposed techniques do increase the accuracy of individual tree mortality models, and are a promising first step towards the next generation of background mortality models. I have also identified the next steps to undertake in order to advance mortality models further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platelet concentrates for topical and infiltrative use - commonly termed Platetet-Rich Plasma (PRP) or Platelet-Rich Fibrin (PRF) - are used or tested as surgical adjuvants or regenerative medicine preparations in most medical fields, particularly in sports medicine and orthopaedic surgery. Even if these products offer interesting therapeutic perspectives, their clinical relevance is largely debated, as the literature on the topic is often confused and contradictory. The long history of these products was always associated with confusions, mostly related to the lack of consensual terminology, characterization and classification of the many products that were tested in the last 40 years. The current consensus is based on a simple classification system dividing the many products in 4 main families, based on their fibrin architecture and cell content: Pure Platelet-Rich Plasma (P-PRP), such as the PRGF-Endoret technique; Leukocyte- and Platelet-Rich Plasma (LPRP), such as Biomet GPS system; Pure Platelet-Rich Fibrin (P-PRF), such as Fibrinet; Leukocyte- and Platelet-Rich Fibrin (L-PRF), such as Intra-Spin L-PRF. The 4 main families of products present different biological signatures and mechanisms, and obvious differences for clinical applications. This classification serves as a basis for further investigations of the effects of these products. Perspectives of evolutions of this classification and terminology are also discussed, particularly concerning the impact of the cell content, preservation and activation on these products in sports medicine and orthopaedics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ependymal tumors across age groups are currently classified and graded solely by histopathology. It is, however, commonly accepted that this classification scheme has limited clinical utility based on its lack of reproducibility in predicting patients' outcome. We aimed at establishing a uniform molecular classification using DNA methylation profiling. Nine molecular subgroups were identified in a large cohort of 500 tumors, 3 in each anatomical compartment of the CNS, spine, posterior fossa, supratentorial. Two supratentorial subgroups are characterized by prototypic fusion genes involving RELA and YAP1, respectively. Regarding clinical associations, the molecular classification proposed herein outperforms the current histopathological classification and thus might serve as a basis for the next World Health Organization classification of CNS tumors.