951 resultados para chromosome replication
Resumo:
Plasma liver-enzyme tests are widely used in the clinic for the diagnosis of liver diseases and for monitoring the response to drug treatment. There is considerable evidence that human genetic variation influences plasma levels of liver enzymes. However, such genetic variation has not been systematically assessed. In the present study, we performed a genome-wide association study of plasma liver-enzyme levels in three populations (total n = 7715) with replication in three additional cohorts (total n = 4704). We identified two loci influencing plasma levels of alanine-aminotransferase (ALT) (CPN1-ERLIN1-CHUK on chromosome 10 and PNPLA3-SAMM50 on chromosome 22), one locus influencing gamma-glutamyl transferase (GGT) levels (HNF1A on chromosome 12), and three loci for alkaline phosphatase (ALP) levels (ALPL on chromosome 1, GPLD1 on chromosome 6, and JMJD1C-REEP3 on chromosome 10). In addition, we confirmed the associations between the GGT1 locus and GGT levels and between the ABO locus and ALP levels. None of the ALP-associated SNPs were associated with other liver tests, suggesting intestine and/or bone specificity. The mechanisms underlying the associations may involve cis- or trans-transcriptional effects (some of the identified variants were associated with mRNA transcription in human liver or lymphoblastoid cells), dysfunction of the encoded proteins (caused by missense variations at the functional domains), or other unknown pathways. These findings may help in the interpretation of liver-enzyme tests and provide candidate genes for liver diseases of viral, metabolic, autoimmune, or toxic origin. The specific associations with ALP levels may point to genes for bone or intestinal diseases.
Resumo:
Lethal chromosomal frequencies were obtained from three Drosophila subobscura samples from the Mt. Avala (Serbia) population in September 2003 (0.218), June 2004 (0.204) and September 2004 (0.250). These values and those from other Balkan populations studied previously (Petnica, Kamariste, Zanjic and Djerdap) were used to analyze the possible effect of population, year, month and altitude above sea level on lethal chromosomal frequencies. According to ANOVAS no effect were observed. Furthermore, the lethal frequencies of the Balkan populations did not vary according to latitude. This is probably due to the relative proximity and high gene flow between these populations. From a joint study of all the Palearctic D. subobscura populations so far analyzed, it can be deduced that the Balkan populations are located in the central area of the species distribution. Finally, it seems that lethal chromosomal frequencies are a consequence of the genetic structure of the populations.
Resumo:
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex, composed of viral proteins, replicating RNA and altered cellular membranes. We describe here HCV replicons that allow the direct visualization of functional HCV replication complexes. Viable replicons selected from a library of Tn7-mediated random insertions in the coding sequence of nonstructural protein 5A (NS5A) allowed the identification of two sites near the NS5A C terminus that tolerated insertion of heterologous sequences. Replicons encoding green fluorescent protein (GFP) at these locations were only moderately impaired for HCV RNA replication. Expression of the NS5A-GFP fusion protein could be demonstrated by immunoblot, indicating that the GFP was retained during RNA replication and did not interfere with HCV polyprotein processing. More importantly, expression levels were robust enough to allow direct visualization of the fusion protein by fluorescence microscopy. NS5A-GFP appeared as brightly fluorescing dot-like structures in the cytoplasm. By confocal laser scanning microscopy, NS5A-GFP colocalized with other HCV nonstructural proteins and nascent viral RNA, indicating that the dot-like structures, identified as membranous webs by electron microscopy, represent functional HCV replication complexes. These findings reveal an unexpected flexibility of the C-terminal domain of NS5A and provide tools for studying the formation and turnover of HCV replication complexes in living cells.
Resumo:
A comparison of cytogenetical data on acute lymphoblastic leukaemia studied at four large European centres has revealed a non-random dicentric chromosome abnormality: dic(9;20) (p1?3;q11) in 10 patients, nine of whom were children. All had early precursor-B lineage ALL, and eight children had a non-standard risk clinical presentation. The origin of the dicentric chromosome was demonstrated using a range of chromosome banding techniques. This was confirmed by FISH using paints and centromeric probes for chromosomes 9 and 20, together with a number of cosmid probes. The follow-up time of these patients is presently too short and the number of patients too few to determine the prognostic significant of this chromosome abnormality.
Resumo:
Tests for bioaccessibility are useful in human health risk assessment. No research data with the objective of determining bioaccessible arsenic (As) in areas affected by gold mining and smelting activities have been published so far in Brazil. Samples were collected from four areas: a private natural land reserve of Cerrado; mine tailings; overburden; and refuse from gold smelting of a mining company in Paracatu, Minas Gerais. The total, bioaccessible and Mehlich-1-extractable As levels were determined. Based on the reproducibility and the accuracy/precision of the in vitro gastrointestinal (IVG) determination method of bioaccessible As in the reference material NIST 2710, it was concluded that this procedure is adequate to determine bioaccessible As in soil and tailing samples from gold mining areas in Brazil. All samples from the studied mining area contained low percentages of bioaccessible As.
Resumo:
DNA-binding proteins mediate a variety of crucial molecular functions, such as transcriptional regulation and chromosome maintenance, replication and repair, which in turn control cell division and differentiation. The roles of these proteins in disease are currently being investigated using microarray-based approaches. However, these assays can be difficult to adapt to routine diagnosis of complex diseases such as cancer. Here, we review promising alternative approaches involving protein-binding microarrays (PBMs) that probe the interaction of proteins from crude cell or tissue extracts with large collections of synthetic or natural DNA sequences. Recent studies have demonstrated the use of these novel PBM approaches to provide rapid and unbiased characterization of DNA-binding proteins as molecular markers of disease, for example cancer progression or infectious diseases.
Resumo:
The list of chromosome races of the common shrew (Sorex araneus) was compiled, the vast literature has been scrutinized, and unpublished data have been added. Altogether, 50 chromosome races could be listed. The name and its synonyms, chromosomal constitution, author of the description, type locality, known distribution range, and additional information are reported for individual races. The present list should be considered a working document that will be regularly updated and supplemented.
Resumo:
The extremely high rate of karyotypic evolution that characterizes the shrews of the Sorex araneus group makes this group an exceptionally interesting model for population genetics and evolutionary studies. Here, we attempted to map 46 microsatellite markers at the chromosome arm level using flow-sorted chromosomes from three karyotypically different taxa of the Sorex araneus group (S. granarius and the chromosome races Cordon and Novosibirsk of S. araneus). The most likely localizations were provided for 35 markers, among which 25 were each unambiguously mapped to a single locus on the corresponding chromosomes in the three taxa, covering the three sexual chromosomes (XY1Y2) and nine of the 18 autosomal arms of the S. araneus group. The results provide further evidence for a high degree of conservation in genome organization in the S. araneus group despite the presence of numerous Robertsonian rearrangements. These markers can therefore be used to compare the genetic structure among taxa of the S. araneus group at the chromosome level and to study the role of chromosomal rearrangements in the genetic diversification and speciation process of this group.
Resumo:
Tat activates transcription by interacting with Sp1, NF-kappaB, positive transcription elongation factor b, and trans-activator-responsive element (TAR). Tat and Sp1 play major roles in transcription by protein-protein interactions at human immunodeficiency virus, type 1 (HIV-1) long terminal repeat. Sp1 activates transcription by interacting with cyclin T1 in the absence of Tat. To disrupt the transcription activation by Tat and Sp1, we fused Sp1-inhibiting polypeptides, zinc finger polypeptide, and the TAR-binding mutant Tat (TatdMt) together. A designed or natural zinc finger and Tat mutant fusion was used to target the fusion to the key regulatory sites (GC box and TAR) on the long terminal repeat and nascent short transcripts to disrupt the molecular interaction that normally result in robust transcription. The designed zinc finger and TatdMt fusions were targeted to the TAR, and they potently repressed both transcription and replication of HIV-1. The Sp1-inhibiting POZ domain, TatdMt, and zinc fingers are key functional domains important in repression of transcription and replication. The designed artificial zinc fingers were targeted to the high affinity Sp1-binding site, and by being fused with TatdMt and POZ domain, they strongly block both Sp1-cyclin T1-dependent transcription and Tat-dependent transcription, even in the presence of excess expressed Tat.