958 resultados para chemically modified electrode
Resumo:
Capillary electrophoresis (CE)/electrochemical detection (EC) for the simultaneous determination of hydrazine and isoniazid has been developed. The electrochemical method uses a novel modified electrode dispersed with ultrafine platinum particles on the surface of a 30 mu m carbon fiber microelectrode. The unique characteristic of the Pt-particles modified carbon fiber microelectrode is its excellent stability. The current measurement for hydrazine is more sensitive than that of isoniazid. Selective determination of trace amount of free hydrazine in isoniazid and its formulation can be achieved at applied potential of 0.5 V.
Resumo:
Eastman-AQ 55D was coated onto a carbon fiber microelectrode surface, and the resulting modified electrodes exhibited high stability. Substantial improvement in the stability was observed as a result of good adhesion and the strong binding of large hydrophobic cations of Eastman AQ 55D. The electrode reaction of meldola blue bound in the polymer film showed a reversible, one-electron transfer process. The effects of solution pH and influence of supporting electrolyte on the modified carbon fiber microelectrode are discussed. The diffusion coefficient of meldola blue in the AQ polymer film determined by chronoamperometry is 2.3 x 10(-18) cm(2) s(-1), and the heterogeneous rate constant of meldola blue at the AQ polymer film/electrode determined by normal pulse voltammetry is 3.97 x 10(-3) cms(-1).
Resumo:
The redox behaviours of 12-molybdophosphoric acid (12-MPA) and 12-molybdosilicic acid (12-MSA) in aqueous acid media are characterized at the carbon fiber (CF) microelectrode. The preparation of CF microelectrode modified with 12-MPA or 12-MSA monolayer and the oxidation-reduction properties of the modified electrode in aqueous acid media or 50% (v/v) water-organic media containing some inorganic acids are studied by cyclic voltammetry. 12-MPA or 12-MSA monolayer modified CF microelectrode with high stability and redox reversibility in aqueous acidic media can be prepared by simple dip coating. The cyclic voltammograms of 12-MPA and 12-MSA and their modified CF microelectrodes in aqueous acid solution exhibit three two-electron reversible waves with the same half-wave potentials, which defines that the species adsorbed on the CF electrode surface are 12-MPA and 12-MSA themselves. The acidity of electrolyte solution, the organic solvents in the electrolyte solution, and the scanning potential range strongly influence on the redox behaviours and stability of 12-MPA or 12-MSA monolayer modified electrodes. On the other hand, the catalytic effects of the 12-MPA and 12-MSA and chlorate anions in aqueous acidic solution on the electrode reaction processes of 12-MPA or 12-MSA are described.
Resumo:
The theoretical model[17] of an ultramicroelectrode modified with a redox species film is used as the diagnostic tool to characterize the catalytic oxidation of ascorbic acid at carbon fiber ultramicrodisk electrodes coated with an Eastman-AQ-Os(bpy)(3)(2+) film. The electrocatalytic behavior of ascorbic acid at the ultramicroelectrode modified by an Eastman-AQ polymer containing tris(2,2'-bipyridine) osmium(III/II) as mediators is described. In order to determine the five characteristic currents quantitatively, the radius of the ultramicroelectrode and the concentration of ascorbic acid are varied systematically. The kinetic zone diagram has been used to study the electrocatalytic system. This system with 0.5-2.75 mM ascorbic acid belongs to SR + E case, and the concentration profiles of the catalyst in the film are given in detail. Finally, optimizing the design of catalytic system is discussed.
Resumo:
The voltammetric behavior of cytochrome c entrapped in hydrogel membranes at paraffin wax-impregnated spectroscopic graphite electrodes (WISGE) was studied in this paper. A pair of well-defined peaks appeared at +70 mV (vs. Ag/AgCl). Beside these two peaks, another pair of peaks emerged at around +225 mV. Further investigations suggested that at least three states of cytochrome c existed in the membranes due to the special structure of the hydrogel. The native conformation of cytochrome c molecules was stabilized by the hydrophilic environment that was formed by the hydroxyl structure of the membranes and facilitated the cytochrome c electron transfer reaction at +70 mV. The molecules directly adsorbed on the surface of the graphite electrode were responsible for the redox peaks at around +225 mV. Whether the adsorption peaks were detectable or not was related to the thickness of membranes and the pre-retaining time before the formation of membranes.
Resumo:
The electrochemical behavior of catechol, hydroquinone and resorcinol on GC and PPy/GC electrode surface were studied by CV and RDE method. The results indicated that these three substance could be oxidized electrocatalytically on PPy film electrode. The possibility of fabrication of amperometric electrochemical sensor for catechol was also studied.
Resumo:
The glassy carbon electrode (gce) and highly oriented pyrolytic graphite (hopg) were electrochemically anodized at a potential of +2.0 V (vs. Ag/AgCl) to create active sites and to improve the adsorption of glucose oxidase (GOD) and flavin adenine dinucle
Resumo:
In this paper, the electrochemical behavior of vitamin B-12, ie cyanocobalamin (abbr. VB12) in a weak acidic aqueous solution and adsorbed on glassy carbon (GC) surface (abbr. VB12(ad)/GC) in different pH buffer solutions have been described by using cyclic voltammetry (cv). It is found that VB12 and VB12(ad)/GC exhibit catalytic activity for the electroreduction of O2 according to two reduction peaks at -0.50 and -1.00 V vs. sce; but their electrocatalytic activity is very unstable. Based on the method of hydrodynamic amperometry [B. Miller and S. Bruckenstein, J. electrochem. Soc. 117, 1033 (1970)], some kinetic parameters for the electrocatalytic reduction of O2 by VB12(ad)/GC have been determined rapidly by using a linear rotation-scan method [Rongzhong Jiang and Shaojun Dong, Electrochim. Acta 35, 1451 (1990)]. These kinetic parameters indicate that the reduction of O2 on VB12(ad)/GC gives water predominantly in both potential ranges which correspond to those two reduction peaks. Possible reaction mechanisms have been suggested.
Resumo:
Electrodes modified with isopolymolybdic acid+polyaniline film, which exhibit high stability and activity in aqueous acidic solution, have been prepared successfully using two methods: one-step synthesis by electrochemical polymerization at a constant applied potential of +0.80 V/SCE or by cycling the potential at 100 mV/s between -0.12 and +0.85 V in 0.5 M H2SO4 containing 5.0x10(-2) M aniline and 5.0x10(-3) M H4Mo8O26, or two-step synthesis by doping the polyaniline film electrode with isopoly acid (IPA) under a cycling potential between -0.20 and +0.40 V in 0.5 M H2SO4 containing the H4Mo8O26 dopant. The thickness of the film and the amount of dopant in the polyaniline film can be controlled by experimental parameters such as the charge, time and the ratio of aniline to IPA in the solution. The experimental results show that electrodes modified with isopolymolybdic acid+polyaniline film using both methods have a strong catalytic effect on the reduction of chlorate anions. Comparison of the two methods of modification shows that the catalytic effect at the modified electrode prepared by the two-step method is greater than that at the electrode prepared by the one-step method.
Resumo:
Chemically modified electrodes (CMEs) prepared by the dispersion of metal oxide particles on a glassy carbon (GC) substrate greatly enhance the voltammetric response and amperometric detection of local anesthetics following liquid chromatography (LC). The enhancement is more pronounced with the GC electrodes dispersed by the metal oxides of higher oxidation states (+3, +4) and for the species exhibiting relatively slow electrode kinetics under given conditions. With an applied potential of 1.2 V (vs. SCE), LC amperometric detection of the analytes at the alpha-alumina modified GC surface gives detection limits 2-5 times lower than those obtained at the bare electrode. The metal oxide-dispersed electrodes display significant improvement in sensitivity, and selectivity and indicate excellent preparation reproducibility and performance stability.
Resumo:
The electrochemically polymerized azure A film electrode was firstly reported in this paper. A quasi-reversible electrode processes of myoglobin with the formal heterogeneous electron transfer rate constant (k(sh)) of 1.73 x 10(-4) cm.s-1 at the polymerized azure A modified electrode have been achieved using in-situ UV-visible spectroelectrochemistry. The adsorption of myoglobin on the polymerized azure A film electrode surface was confirmed by XPS. With simultaneously studying of cyclic voltammetry and in-situ cyclic voltabsorptometry, the attribution of the voltammetry responses of myoglobin at the film electrode has been studied. The mechanism for the heterogeneous electron transfer of myoglobin at the polymerized azure A film modified electrode has been proposed as well.
Resumo:
In this paper the electrochemical properties of isopolymolybdic anion thin film modified carbon fibre (CF) microelectrode prepared by simple dip coating have been described. The modified electrode shows three couples of surface redox waves between + 0.70 and - 0.1 V vs. sce in 2 M H2SO4 solution with good stability and reversibility. The pH of solution has a marked effect on the electrochemical behaviour and stability of the film, the stronger the acidity of electrolyte solution is, the better the stability and reversibility of isopolymolybdic anion film CF microelectrode will be. The scanning potential range strongly influences on the electrochemical behaviour of the film. The isopolymolybdic anion film prepared by the dip coating resulting a monolayer with estimated surface concentration (F) 2.8 x 10(-11) mol cm-2. From the half-peak widths and peak areas of the surface redox waves of the film electrode, the first three surface waves are corresponding to two-electron processes. The electron energy spectra show the products by six electrons reduction are a mixture of Mo(VI) and Mo(V) species. The electrochemical reaction of the isopolymolybdic anion monolayer can be expressed as Mo8O264- + mH+ + 2ne half arrow right over half arrow left [HmMo8-2n(VI)Mo2n(V)O26](4,2n-m)-n = 1, 2, 3; m = 2, 5, 7.
Resumo:
A conducting polyaniline (PAn) film modified glassy carbon (GC) electrode was prepared by electrochemical polymerization. The electrochemical behavior of ascorbic acid (AH(2)) in aqueous solution at this PAn modified electrode was studied in detail. The experimental results show that PAn film modified electrode has good electrocatalytic activity on the oxidation of ascorbic acid in aqueous solution over a wide range of pH value, among which pH 4 is the optimum condition. The oxidation process of ascorbic acid at PAn film electrode can be regarded as an EC catalytic mechanism. The kinetic process of the catalytic reaction was investigated by rotating disk electrode (RDE) coated with PAn films. The rate constant of the catalytic reaction was evaluated. The catalytic peak currents are proportional to the concentrations tions of ascorbic acid in the range of 5 x 10(-2)-1 x 10(-6) mol . L-1. The PAn film elec trodes give very stable responce for the oxidation of ascorbic acid. The present investigation shows the posibility of using PAn film modified electrode for the determination of ascorbic acid.
Resumo:
A Nafion/ionophore, 4-tert-butylcalix[4]arene-tetrakis(N,N-dimethylthioacetamide) composite coated and bismuth film modified glassy carbon electrode. (GC/NA-IONO/BiFE) was described to determine trace lead sensitively and selectively. The characteristics of such modified GC/NA-IONO/BiFE were studied by scanning electron microscopy and cyclic voltammetry. The influence of various experimental parameters upon the stripping lead signal at the GC/NA-IONO/BiFE was explored. Under the optimized conditions, the differential pulse voltammetric stripping response is highly linear over the 0.1-8.0 nM lead range examined (180s preconcentration at -1.2V), with a detection limit of 0.044nM and good precision (RSD=5.4% at 0.5nM). Also applicability to seawater samples was demonstrated at such modified electrode. The high selectivity of ionophore coupled with the excellent electrochemical characteristics of bismuth endow the GC/NA-IONO/BiFE a promising and robust tool for monitoring of trace lead rapidly and precisely.
Resumo:
This work describes the preparation of a chelating resin from chemically modified chitosan. The resin was synthesized by using O-carboxymethylated chitosan to cross-link a polymeric Schiffs base of thiourea/glutaraldehyde and characterized by IR. Batch method was applied for testing the resin's adsorption behavior. Adsorption experiments showed the resin had good adsorption capacity and high selectivity for Ag(I) in aqueous solution. The maximum uptake of Ag(I) exhibited was 3.77 mmol/g, at pH 4.0. The results also indicated that the adsorption process was exothermic and fit well with the pseudosecond-order kinetic model. Ag(I) desorption could reach 99.23% using 0.5 M thiourea-2.0 M HCl solution. (C) 2010 Elsevier B.V. All rights reserved.