911 resultados para charged particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to contribute to the assessment of exposure levels of ultrafine particles (UFP) in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung-deposited alveolar surface area (resulting from exposure to UFP) in a major avenue leading to the town centre during late Spring, as well as in indoor buildings facing it. This study revealed differentiated patterns for week days and weekends, consistent with PM(2.5) and PM(10) patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels could be directly related with the fluxes of automobile traffic. During a typical week, UFP alveolar deposited surface area varied between 35.0 and 89.2 µm(2)/cm(3), which is comparable with levels reported for other towns such in Germany and United States. The measured values allowed the determination of the number of UFP per cm(3), which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32-63%) outdoor, which is somewhat lower than levels observed in houses in Ontario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 μm2/cm3 (increased to 72.9 μm2/cm3 due to gas burning) to a maximum of 890.3 μm2/cm3 measured during fish boiling in water, and a maximum of 4500 μm2/cm3 during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate whether the liquid-vapour phase transition of strongly dipolar fluids can be understood using a model of patchy colloids. These consist of hard spherical particles with three short-ranged attractive sites (patches) on their surfaces. Two of the patches are of type A and one is of type B. Patches A on a particle may bond either to a patch A or to a patch B on another particle. Formation of an AA (AB) bond lowers the energy by epsilon AA (epsilon AB). In the limit [image omitted], this patchy model exhibits condensation driven by AB-bonds (Y-junctions). Y-junctions are also present in low-density, strongly dipolar fluids, and have been conjectured to play a key role in determining their critical behaviour. We map the dipolar Yukawa hard-sphere (DYHS) fluid onto this 2A + 1B patchy model by requiring that the latter reproduce the correct DYHS critical point as a function of the isotropic interaction strength epsilon Y. This is achieved for sensible values of epsilon AB and the bond volumes. Results for the internal energy and the particle coordination number are in qualitative agreement with simulations of DYHSs. Finally, by taking the limit [image omitted], we arrive at a new estimate for the critical point of the dipolar hard-sphere fluid, which agrees with extrapolations from simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a novel, low-cost and low-tech method for the fabrication of elastomeric Janus particles with diameters ranging from micrometers to millimeters. This consists of UV-irradiating soft urethane/urea elastomer spheres, which are then extracted in toluene and dried. The spheres are thus composed of a single material: no coating or film deposition steps are required. Furthermore, the whole procedure is carried out at ambient temperature and pressure. Long, labyrinthine corrugations ("wrinkles") appear on the irradiated portions of the particles' surfaces, the spatial periodicity of which can be controlled by varying the sizes of particles. The asymmetric morphology of the resulting Janus particles has been confirmed by scanning electron microscopy, atomic force microscopy, and optical microscopy. We have also established that the spheres behave elastically by performing bouncing tests with dried and swollen spheres. Results can be interpreted by assuming that each sphere consists of a thin, stiff surface layer ("skin") lying atop a thicker, softer substrate ("bulk"). The skin's higher stiffness is hypothesized to result from the more extensive cross-linking of the polymer chains located near the surface by the UV radiation. Textures then arise from competition between the effects of bending the skin and compressing the bulk, as the solvent evaporates and the sphere shrinks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to (1) conduct an elemental characterization of airborne particles sampled in Cape Verde and (2) assess the influence of Sahara desert on local suspended particles. Particulate matter (PM10) was collected in Praia city (14°94'N; 23°49'W) with a low-volume sampler in order to characterize its chemical composition by k0-INAA. The filter samples were first weighed and subsequently irradiated at the Portuguese Research Reactor. Results showed that PM10 concentrations in Cape Verde markedly exceeded the health-based air quality standards defined by the European Union (EU), World Health Organization (WHO), and U.S. Environmental Protection Agency (EPA), in part due to the influence of Sahara dust transport. The PM10 composition was characterized essentially by high concentrations of elements originating from the soil (K, Sm, Co, Fe, Sc, Rb, Cr, Ce, and Ba) and sea (Na), and low concentrations of anthropogenic elements (As, Zn, and Sb). In addition, the high concentrations of PM measured in Cape Verde suggest that health of the population may be less affected compared with other sites where PM10 concentrations are lower but more enriched with toxic elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have shown that human exposures to airbome dust and microorganisms, such as bacteria and fungi, can cause respiratory diseases. Agricultural workers have been found to be at high risk of exposures to airborne particles. From a human health perspective dust exposure in pig farming is the most important risk because of the large number of workers needed in pig production and the increasing number of working hours inside enclosed buildings. In the pig buildings, particulate matters like dust play a role in not only deteriorating indoor air quality but also can cause an adverse health effect on workers. Generally, dust is recognized to adsorb and transport odorous compounds and biological agents. The aim of this study was to determine particles contamination in 7 swine farms located in Lisbon district, Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Versão preprint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bearing in mind the potential adverse health effects of ultrafine particles, it is of paramount importance to perform effective monitoring of nanosized particles in several microenvironments, which may include ambient air, indoor air, and also occupational environments. In fact, effective and accurate monitoring is the first step to obtaining a set of data that could be used further on to perform subsequent evaluations such as risk assessment and epidemiologic studies, thus proposing good working practices such as containment measures in order to reduce occupational exposure. This paper presents a useful methodology for monitoring ultrafine particles/nanoparticles in several microenvironments, using online analyzers and also sampling systems that allow further characterization on collected nanoparticles. This methodology was validated in three case studies presented in the paper, which assess monitoring of nanosized particles in the outdoor atmosphere, during cooking operations, and in a welding workshop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotechnology is an important emerging industry with a projected annual market of around one trillion dollars by 2015. It involves the control of atoms and molecules to create new materials with a variety of useful functions. Although there are advantages on the utilization of these nano-scale materials, questions related with its impact over the environment and human health must be addressed too, so that potential risks can be limited at early stages of development. At this time, occupational health risks associated with manufacturing and use of nanoparticles are not yet clearly understood. However, workers may be exposed to nanoparticles through inhalation at levels that can greatly exceed ambient concentrations. Current workplace exposure limits are based on particle mass, but this criteria could not be adequate in this case as nanoparticles are characterized by very large surface area, which has been pointed out as the distinctive characteristic that could even turn out an inert substance into another substance exhibiting very different interactions with biological fluids and cells. Therefore, it seems that, when assessing human exposure based on the mass concentration of particles, which is widely adopted for particles over 1 μm, would not work in this particular case. In fact, nanoparticles have far more surface area for the equivalent mass of larger particles, which increases the chance they may react with body tissues. Thus, it has been claimed that surface area should be used for nanoparticle exposure and dosing. As a result, assessing exposure based on the measurement of particle surface area is of increasing interest. It is well known that lung deposition is the most efficient way for airborne particles to enter the body and cause adverse health effects. If nanoparticles can deposit in the lung and remain there, have an active surface chemistry and interact with the body, then, there is potential for exposure. It was showed that surface area plays an important role in the toxicity of nanoparticles and this is the metric that best correlates with particle-induced adverse health effects. The potential for adverse health effects seems to be directly proportional to particle surface area. The objective of the study is to identify and validate methods and tools for measuring nanoparticles during production, manipulation and use of nanomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most general Two Higgs Doublet Model potential without explicit CP violation depends on 10 real independent parameters. Excluding spontaneous CP violation results in two 7 parameter models. Although both models give rise to 5 scalar particles and 2 mixing angles, the resulting phenomenology of the scalar sectors is different. If flavour changing neutral currents at tree level are to be avoided, one has, in both cases, four alternative ways of introducing the fermion couplings. In one of these models the mixing angle of the CP even sector can be chosen in such a way that the fermion couplings to the lightest scalar Higgs boson vanishes. At the same time it is possible to suppress the fermion couplings to the charged and pseudo-scalar Higgs bosons by appropriately choosing the mixing angle of the CP odd sector. We investigate the phenomenology of both models in the fermiophobic limit and present the different branching ratios for the decays of the scalar particles. We use the present experimental results from the LEP collider to constrain the models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the influence of strong directional, or bonding, interactions on the phase diagram of complex fluids, and in particular on the liquid-vapour critical point. To this end we revisit a simple model and theory for associating fluids which consist of spherical particles having a hard-core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots). Two of the spots are of type A and one is of type B; the interactions between each pair of spots have strengths [image omitted], [image omitted] and [image omitted]. The theory is applied over the whole range of bonding strengths and results are interpreted in terms of the equilibrium cluster structures of the coexisting phases. In systems where unlike sites do not interact (i.e. where [image omitted]), the critical point exists all the way to [image omitted]. By contrast, when [image omitted], there is no critical point below a certain finite value of [image omitted]. These somewhat surprising results are rationalised in terms of the different network structures of the two systems: two long AA chains are linked by one BB bond (X-junction) in the former case, and by one AB bond (Y-junction) in the latter. The vapour-liquid transition may then be viewed as the condensation of these junctions and we find that X-junctions condense for any attractive [image omitted] (i.e. for any fraction of BB bonds), whereas condensation of the Y-junctions requires that [image omitted] be above a finite threshold (i.e. there must be a finite fraction of AB bonds).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm 3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because polycyclic aromatic hydrocarbons (PAHs) have been proven to be toxic, mutagenic, and/or carcinogenic, there is widespread interest in analyzing and evaluating exposure to PAHs in atmospheric environments influenced by different emission sources. Because traffic emissions are one of the biggest sources of fine particles, more information on carcinogenic PAHs associated with fine particles needs to be provided. Aiming to further understand the impact of traffic particulate matter (PM) on human health, this study evaluated the influence of traffic on PM10 (PM with aerodynamic diameter <10 µm) and PM2.5 (PM with aerodynamic diameter <2.5 µm), considering their concentrations and compositions in carcinogenic PAHs. Samples were collected at one site influenced by traffic emissions and at one reference site using lowvolume samplers. Analysis of PAHs was performed by microwave-assisted extraction combined with liquid chromatography (MAE-LC); 17 PAHs, including 9 carcinogenic ones, were quantified. At the site influenced by traffic emissions, PM10 and PM2.5 concentrations were, respectively, 380 and 390% higher than at the background site. When influenced by traffic emissions, the total concentration of nine carcinogenic compounds (naphthalene, chrysene, benzo(a)anthracene, benzo(b) fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and dibenzo(a,l)pyrene) was increased by 2400 and 3000% in PM10 and PM2.5, respectively; these nine carcinogenic compounds represented 68 and 74% of total PAHs (ƩPAHs) for PM10 and PM2.5, respectively. All PAHs, including the carcinogenic compounds, were mainly present in fine particles. Considering the strong influence of these fine particles on human health, these conclusions are relevant for the development of strategies to protect public health.