966 resultados para central nervous system tumor


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural stem cells have been proposed as a new and promising treatment modality in various pathologies of the central nervous system, including malignant brain tumors. However, the underlying mechanism by which neural stem cells target tumor areas remains elusive. Monitoring of these cells is currently done by use of various modes of molecular imaging, such as optical imaging, magnetic resonance imaging and positron emission tomography, which is a novel technology for visualizing metabolism and signal transduction to gene expression. In this new context, the microenvironment of (malignant) brain tumors and the blood-brain barrier gains increased interest. The authors of this review give a unique overview of the current molecular-imaging techniques used in different therapeutic experimental brain tumor models in relation to neural stem cells. Such methods for molecular imaging of gene-engineered neural stem/progenitor cells are currently used to trace the location and temporal level of expression of therapeutic and endogenous genes in malignant brain tumors, closing the gap between in vitro and in vivo integrative biology of disease in neural stem cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Preoperative central neurologic deficits in the context of acute type A dissection are a complex comorbidity and difficult to handle. The aim this study was to analyze this subgroup of patients by comparing them with neurologically asymptomatic patients with type A dissection. Results may help the surgeon in preoperative risk assessment and thereby aid in the decision-making process. METHODS: We reviewed the data of patients admitted for acute type A dissection during the period from 1999 to 2010. Associated risk factors, time to surgery from admission, extension of the dissection, localization of central nervous ischemic lesions, and the influence of perioperative brain protective strategies were analyzed in a comparison of preoperative neurologically deficient to nondeficient patients. RESULTS: Forty-seven (24.5%) of a total of 192 patients had new-onset central neurologic symptoms prior to surgery. Concomitant myocardial infarction (OR 4.9, 95% CI 1.6-15.3, P = 0.006), renal failure (OR 5.9, 95% CI 1.1-32.8, P = 0.04), dissected carotid arteries (OR 9.2, 95% CI 2.4-34.7, P = 0.001), and late admission to surgery at >6 hours after symptom onset (OR 2.7, 95% CI 1.1-6.8, P = 0.04) were observed more frequently in neurologically deficient patients. These patients had a higher 30-day in-hospital mortality on univariate analysis (P = 0.01) and a higher rate of new postoperative neurologic deficits (OR 9.2, 95% CI 2.4-34.7, P = 0.02). Neurologic survivors had an equal hospital stay, and 67% of them had improved symptoms. CONCLUSIONS: The predominance of neurologic symptoms at admission may be responsible for an initial misdiagnosis. The concurrent central nervous system ischemia and myocardial infarction explains a higher mortality rate and a more extensive "character" of the disease. Neurologically deficient patients are at higher risk of developing new postoperative neurologic symptoms, but prognosis for the neurologic evolution of survivors is generally favorable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microtubule-associated protein 2 (MAP2), a protein linked to the neuronal cytoskeleton in the mature central nervous system (CNS), has recently been identified in glial precursors indicating a potential role during glial development. In the present study, we systematically analyzed the expression of MAP2 in a series of 237 human neuroepithelial tumors including paraffin-embedded specimens and tumor tissue microarrays from oligodendrogliomas, mixed gliomas, astrocytomas, glioblastomas, ependymomas, as well as dysembryoplastic neuroepithelial tumors (DNT), and central neurocytomas. In addition, MAP2-immunoreactive precursor cells were studied in the developing human brain. Three monoclonal antibodies generated against MAP2A-B or MAP2A-D isoforms were used. Variable immunoreactivity for MAP2 could be observed in all gliomas with the exception of ependymomas. Oligodendrogliomas exhibited a consistently strong and distinct pattern of expression characterized by perinuclear cytoplasmic staining without significant process labeling. Tumor cells with immunoreactive bi- or multi-polar processes were mostly encountered in astroglial neoplasms, whereas the small cell component in neurocytomas and DNT was not labeled. These features render MAP2 immunoreactivity a helpful diagnostic tool for the distinction of oligodendrogliomas and other neuroepithelial neoplasms. RT-PCR, Western blot analysis, and in situ hybridization confirmed the expression of MAP2A-C (including the novel MAP2+ 13 transcript) in both oligodendrogliomas and astrocytomas. Double fluorescent laser scanning microscopy showed that GFAP and MAP2 labeled different tumor cell populations. In embryonic human brains, MAP2-immunoreactive glial precursor cells were identified within the subventricular or intermediate zones. These precursors exhibit morphology closely resembling the immunolabeled neoplastic cells observed in glial tumors. Our findings demonstrate MAP2 expression in astrocytic and oligodendroglial neoplasms. The distinct pattern of immunoreactivity in oligodendrogliomas may be useful as a diagnostic tool. Since MAP2 expression occurs transiently in migrating immature glial cells, our findings are in line with an assumed origin of diffuse gliomas from glial precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, we proposed the hypothesis according to wich the central hypotensive effect of clonidine and related substances could be related to an action upon specific receptors, requiring the imidazoline or imidazoline-like structures, rather than alpha2-adrenoceptors. Since then, direct evidences have been accumulated to confirm the existence of a population of imidazoline specific binding sites in the brainstem of animals and man, more precisely in the Nucleus Reticularis Lateralis (NRL) region of the ventrolateral medulla (VLM), site of the antihypertensive action of clonidine. The purification of the putative endogenous ligand of the imidazoline receptors - named endazoline - is currently being attempted from human brain extracts. This new concept might at last lead to the expected dissociation of the pharmacological mechanisms involved, on the one hand, in the therapeutic antihypertensive effect, and on the other, in their major side-effect, which is sedation. In fact, it has been recently confirmed that hypotension is mediated by the activation of imidazoline preferring receptors (IPR) within the NRL region, while sedation is attributed to the inhibition of alpha2-adrenergic mechanisms in the locus coeruleus, which is involved in the control of the sleep-waking cycle. The IPRmay constitute on interesting target for new drugs in the treatment of arterial hypertension. Finally, dysfunctions of this modulatory system which could be involved in the pathophysiologyof some forms of the hypertensive disease are under investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Cilengitide is a selective integrin inhibitor that is well tolerated and has demonstrated biologic activity in patients with recurrent malignant glioma. The primary objectives of this randomized phase 2 trial were to determine the safety and efficacy of cilengitide when combined with radiation and temozolomide for patients with newly diagnosed glioblastoma multiforme and to select a dose for comparative clinical testing. METHODS: In total, 112 patients were accrued. Eighteen patients received standard radiation and temozolomide with cilengitide in a safety run-in phase followed by a randomized phase 2 trial with 94 patients assigned to either a 500 mg dose group or 2000 mg dose group. The trial was designed to estimate overall survival benefit compared with a New Approaches to Brain Tumor Therapy (NABTT) Consortium internal historic control and data from the published European Organization for Research and Treatment of Cancer (EORTC) trial EORTC 26981. RESULTS: Cilengitide at all doses studied was well tolerated with radiation and temozolomide. The median survival was 19.7 months for all patients, 17.4 months for the patients in the 500 mg dose group, 20.8 months for patients in the 2000 mg dose group, 30 months for patients who had methylated O6-methylguanine-DNA methyltransferase (MGMT) status, and 17.4 months for patients who had unmethylated MGMT status. For patients aged ≤70 years, the median survival and survival at 24 months was superior to what was observed in the EORTC trial (20.7 months vs 14.6 months and 41% vs 27%, respectively; P = .008). CONCLUSIONS: Cilengitide was well tolerated when combined with standard chemoradiation and may improve survival for patients newly diagnosed with glioblastoma multiforme regardless of MGMT methylation status. The authors concluded that, from an efficacy and safety standpoint, future trials of this agent in this population should use the 2000 mg dose. Cancer 2012. © 2012 American Cancer Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral infections can be a major thread for the central nervous system (CNS), therefore, the immune system must be able to mount a highly proportionate immune response, not too weak, which would allow the virus to proliferate, but not too strong either, to avoid collateral damages. Here, we aim at reviewing the immunological mechanisms involved in the host defense in viral CNS infections. First, we review the specificities of the innate as well as the adaptive immune responses in the CNS, using several examples of various viral encephalitis. Then, we focus on three different modes of interactions between viruses and immune responses, namely human Herpes virus-1 encephalitis with the defect in innate immune response which favors this disease; JC virus-caused progressive multifocal leukoencephalopathy and the crucial role of adaptive immune response in this example; and finally, HIV infection with the accompanying low grade chronic inflammation in the CNS in some patients, which may be an explanation for the presence of cognitive disorders, even in some well-treated HIV-infected patients. We also emphasize that, although the immune response is generally associated with viral replication control and limited cellular death, an exaggerated inflammatory reaction can lead to tissue damage and can be detrimental for the host, a feature of the immune reconstitution inflammatory syndrome (IRIS). We will briefly address the indication of steroids in this situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lesions involving the sympathetic (para-vertebral ganglia) and para-sympathetic ganglia of intestines (Auerbach plexus) and heart (right atrial ganglia) were comparatively analyzed in mice infected with either of three different strain types of Trypanosoma cruzi, during acute and chronic infection, in an attempt to understand the influence of parasite strain in causing autonomic nervous system pathology. Ganglionar involvement with neuronal destruction appeared related to inflammation, which most of the times extended from neighboring adipose and cardiac, smooth and striated muscular tissues. Intraganglionic parasitism was exceptional. Inflammation involving peripheral nervous tissue exhibited a focal character and its variability in the several groups examined appeared unpredictable. Although lesions were generally more severe with the Y strain, comparative qualitative study did not allow the conclusion, under the present experimental conditions, that one strain was more pathogenic to the autonomic nervous system than others. No special tropism of the parasites from any strain toward autonomic ganglia was disclosed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation. The study of human brain development in itsearly stage is today possible thanks to in vivo fetalmagnetic resonance imaging (MRI) techniques. Aquantitative analysis of fetal cortical surfacerepresents a new approach which can be used as a markerof the cerebral maturation (as gyration) and also forstudying central nervous system pathologies [1]. However,this quantitative approach is a major challenge forseveral reasons. First, movement of the fetus inside theamniotic cavity requires very fast MRI sequences tominimize motion artifacts, resulting in a poor spatialresolution and/or lower SNR. Second, due to the ongoingmyelination and cortical maturation, the appearance ofthe developing brain differs very much from thehomogenous tissue types found in adults. Third, due tolow resolution, fetal MR images considerably suffer ofpartial volume (PV) effect, sometimes in large areas.Today extensive efforts are made to deal with thereconstruction of high resolution 3D fetal volumes[2,3,4] to cope with intra-volume motion and low SNR.However, few studies exist related to the automatedsegmentation of MR fetal imaging. [5] and [6] work on thesegmentation of specific areas of the fetal brain such asposterior fossa, brainstem or germinal matrix. Firstattempt for automated brain tissue segmentation has beenpresented in [7] and in our previous work [8]. Bothmethods apply the Expectation-Maximization Markov RandomField (EM-MRF) framework but contrary to [7] we do notneed from any anatomical atlas prior. Data set &Methods. Prenatal MR imaging was performed with a 1-Tsystem (GE Medical Systems, Milwaukee) using single shotfast spin echo (ssFSE) sequences (TR 7000 ms, TE 180 ms,FOV 40 x 40 cm, slice thickness 5.4mm, in plane spatialresolution 1.09mm). Each fetus has 6 axial volumes(around 15 slices per volume), each of them acquired inabout 1 min. Each volume is shifted by 1 mm with respectto the previous one. Gestational age (GA) ranges from 29to 32 weeks. Mother is under sedation. Each volume ismanually segmented to extract fetal brain fromsurrounding maternal tissues. Then, in-homogeneityintensity correction is performed using [9] and linearintensity normalization is performed to have intensityvalues that range from 0 to 255. Note that due tointra-tissue variability of developing brain someintensity variability still remains. For each fetus, ahigh spatial resolution image of isotropic voxel size of1.09 mm is created applying [2] and using B-splines forthe scattered data interpolation [10] (see Fig. 1). Then,basal ganglia (BS) segmentation is performed on thissuper reconstructed volume. Active contour framework witha Level Set (LS) implementation is used. Our LS follows aslightly different formulation from well-known Chan-Vese[11] formulation. In our case, the LS evolves forcing themean of the inside of the curve to be the mean intensityof basal ganglia. Moreover, we add local spatial priorthrough a probabilistic map created by fitting anellipsoid onto the basal ganglia region. Some userinteraction is needed to set the mean intensity of BG(green dots in Fig. 2) and the initial fitting points forthe probabilistic prior map (blue points in Fig. 2). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed as described in [8]. Results.The case study presented here has 29 weeks of GA. Thehigh resolution reconstructed volume is presented in Fig.1. The steps of BG segmentation are shown in Fig. 2.Overlap in comparison with manual segmentation isquantified by the Dice similarity index (DSI) equal to0.829 (values above 0.7 are considered a very goodagreement). Such BG segmentation has been applied on 3other subjects ranging for 29 to 32 GA and the DSI hasbeen of 0.856, 0.794 and 0.785. Our segmentation of theinner (red and blue contours) and outer cortical surface(green contour) is presented in Fig. 3. Finally, torefine the results we include our WM segmentation in theFreesurfer software [12] and some manual corrections toobtain Fig.4. Discussion. Precise cortical surfaceextraction of fetal brain is needed for quantitativestudies of early human brain development. Our workcombines the well known statistical classificationframework with the active contour segmentation forcentral gray mater extraction. A main advantage of thepresented procedure for fetal brain surface extraction isthat we do not include any spatial prior coming fromanatomical atlases. The results presented here arepreliminary but promising. Our efforts are now in testingsuch approach on a wider range of gestational ages thatwe will include in the final version of this work andstudying as well its generalization to different scannersand different type of MRI sequences. References. [1]Guibaud, Prenatal Diagnosis 29(4) (2009). [2] Rousseau,Acad. Rad. 13(9), 2006, [3] Jiang, IEEE TMI 2007. [4]Warfield IADB, MICCAI 2009. [5] Claude, IEEE Trans. Bio.Eng. 51(4) (2004). [6] Habas, MICCAI (Pt. 1) 2008. [7]Bertelsen, ISMRM 2009 [8] Bach Cuadra, IADB, MICCAI 2009.[9] Styner, IEEE TMI 19(39 (2000). [10] Lee, IEEE Trans.Visual. And Comp. Graph. 3(3), 1997, [11] Chan, IEEETrans. Img. Proc, 10(2), 2001 [12] Freesurfer,http://surfer.nmr.mgh.harvard.edu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Management of chronic pain is a real challenge, and current treatments focusing on blocking neurotransmission in the pain pathway have only resulted in limited success. Activation of glia cells has been widely implicated in neuroinflammation in the central nervous system, leading to neruodegeneration in many disease conditions such as Alzheimer's and multiple sclerosis. The inflammatory mediators released by activated glial cells, such as tumor necrosis factor-α and interleukin-1β can not only cause neurodegeneration in these disease conditions, but also cause abnormal pain by acting on spinal cord dorsal horn neurons in injury conditions. Pain can also be potentiated by growth factors such as BDNF and bFGF that are produced by glia to protect neurons. Thus, glia cells can powerfully control pain when they are activated to produce various pain mediators. We will review accumulating evidence supporting an important role of microglia cells in the spinal cord for pain control under injury conditions (e.g. nerve injury). We will also discuss possible signaling mechanisms in particular MAP kinase pathways that are critical for glia control of pain. Investigating signaling mechanisms in microglia may lead to more effective management of devastating chronic pain.