854 resultados para captive breeding supplementary breeding population management trivers
Resumo:
This study evaluated biological aspects of Petrolisthes armatus inhabiting a remaining but disturbed mangrove area of Brazil. Samples were taken from March 2005 to July 2006, during low tide in the rocky-shore region. The size frequency distribution for all the individuals collected was bimodal. The sex ratio obtained was not different from 1: 1, and the population was classified as standard. A higher reproductive ratio and earlier ovigerous conditions were found in relation to another southern population; these can be hypothesized as adaptations to life in a stressed environment. Even though the population living in Ara has been subject to an environment frequently disturbed by human-produced pollutants, our results show no sign of negative effects on reproductive stages, recruits or members of the population in general. The population profiles of P. armatus show some peculiarities when compared to other populations inhabiting non disturbed environments.
Resumo:
Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.
Resumo:
The role of physiological understanding in improving the efficiency of breeding programs is examined largely from the perspective of conventional breeding programs. Impact of physiological research to date on breeding programs, and the nature of that research, was assessed from (i) responses to a questionnaire distributed to plant breeders and physiologists, and (ii) a survey of literature abstracts. Ways to better utilise physiological understanding for improving breeding programs are suggested, together with possible constraints to delivering beneficial outcomes. Responses from the questionnaire indicated a general view that the contribution by crop physiology to date has been modest. However, most of those surveyed expected the contribution to be larger in the next 20 years. Some constraints to progress perceived by breeders and physiologists were highlighted. The survey of literature abstracts indicated that from a plant breeding perspective, much physiological research is not progressing further than making suggestions about possible approaches to selection. There was limited evidence in the literature of objective comparison of such suggestions with existing methodology, or of development and application of these within active breeding programs. It is argued in this paper that the development of outputs from physiological research for breeding requires a good understanding of the breeding program(s) being serviced and factors affecting its performance. Simple quantitative genetic models, or at least the ideas they represent, should be considered in conducting physiological research and in envisaging and evaluating outputs. The key steps of a generalised breeding program are outlined, and the potential pathways for physiological understanding to impact on these steps are discussed. Impact on breeding programs may arise through (i) better choice of environments in which to conduct selection trials, (ii) identification of selection criteria and traits for focused introgression programs, and (iii) identifying traits for indirect selection criteria as an adjunct to criteria already used. While many breeders and physiologists apparently recognise that physiological understanding may have a major role in the first area, there appears to be relatively Little research activity targeting this issue, and a corresponding bias, arguably unjustified, toward examining traits for indirect selection. Furthermore, research on traits aimed at crop improvement is often deficient because key genetic parameters, such as genetic variation in relevant breeding populations and genetic (as opposed to phenotypic) correlations with yield or other characters of economic importance, are not properly considered in the research. Some areas requiring special attention for successfully interfacing physiology research with breeding are discussed. These include (i) the need to work with relevant genetic populations, (ii) close integration of the physiological research with an active breeding program, and (iii) the dangers of a pre-defined or narrow focus in the physiological research.
Statistical interaction with quantitative geneticists to enhance impact from plant breeding programs
Linking biophysical and genetic models to integrate physiology, molecular biology and plant breeding
Resumo:
In this study, serum samples of 203 animals from different locations, from zoos and breeding facilities from the north and northeast regions of Brazil, were analyzed for the presence of anti-Toxoplasma gondii antibodies by the modified agglutination test (MAT) with a cutoff of 1:25. Of the sampled animals, 184 were adult mammals of both sexes and 19 were birds. Antibodies were found in 61 of 184 mammals, and no association between sex and age of the animals and the presence of T. gondii antibodies was observed (P < 0.05). Anti-T gondii antibodies were not found in birds. Toxoplasma gondii was detected in Brazilian tapir (Tapirus terrestris) for the first time.
Resumo:
The magnitude of genotype-by-management (G x M) interactions for grain yield and grain protein concentration was examined in a multi-environment trial (MET) involving a diverse set of 272 advanced breeding lines from the Queensland wheat breeding program. The MET was structured as a series of management-regimes imposed at 3 sites for 2 years. The management-regimes were generated at each site-year as separate trials in which planting time, N fertiliser application rate, cropping history, and irrigation were manipulated. irrigation was used to simulate different rainfall regimes. From the combined analysis of variance, the G x M interaction variance components were found to be the largest source of G x E interaction variation for both grain yield (0.117 +/- 0.005 t(2) ha(-2); 49% of total G x E 0.238 +/- 0.028 t(2) ha(-2)) and grain protein concentration (0.445 +/- 0.020%(2); 82% of total G x E 0.546 +/- 0.057%(2)), and in both cases this source of variation was larger than the genotypic variance component (grain yield 0.068 +/- 0.014 t(2) ha(-2) and grain protein 0.203 +/- 0.026%(2)). The genotypic correlation between the traits varied considerably with management-regime, ranging from -0.98 to -0.31, with an estimate of 0.0 for one trial. Pattern analysis identified advanced breeding lines with improved grain yield and grain protein concentration relative to the cultivars Hartog, Sunco and Meteor. It is likely that a large component of the previously documented G x E interactions for grain yield of wheat in the northern grains region are in part a result of G x M interactions. The implications of the strong influence of G x M interactions for the conduct of wheat breeding METs in the northern region are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Participatory plant breeding (PPB) has been suggested as an effective alternative to formal plant breeding (FPB) as a breeding strategy for achieving productivity gains under low input conditions. With genetic progress through PPB and FPB being determined by the same genetic variables, the likelihood of success of PPB approaches applied in low input target conditions was analyzed using two case studies from FPB that have resulted in significant productivity gains under low input conditions: (1) breeding tropical maize for low input conditions by CIMMYT, and (2) breeding of spring wheat for the highly variable low input rainfed farming systems in Australia. In both cases, genetic improvement was an outcome of long-term investment in a sustained research effort aimed at understanding the detail of the important environmental constraints to productivity and the plant requirements for improved adaptation to the identified constraints, followed up by the design and continued evaluation of efficient breeding strategies. The breeding strategies used differed between the two case studies but were consistent in their attention to the key determinants of response to selection: (1) ensuring adequate sources of genetic variation and high selection pressures for the important traits at all stages of the breeding program, (2) use of experimental procedures to achieve high levels of heritability in the breeding trials, and (3) testing strategies that achieved a high genetic correlation between performance of germplasm in the breeding trials and under on-farm conditions. The implications of the outcomes from these FPB case studies for realizing the positive motivations for adopting PPB strategies are discussed with particular reference for low input target environment conditions.
Resumo:
For species that form multi-generational and territorial family groups, resource-rich areas are predicted to support family dynasties in which one genetic lineage continuously occupies an area and may even expand to occupy surrounding areas. Data from a long-term study of Tasmanian native hens (Gallinula mortierii) support this prediction. The reproductive success and dispersal patterns of 18 hen lineages were monitored for seven breeding seasons and over several generations. The founder group with the highest average territory quality produced the highest total number of fledged young and the highest number of fledged linear descendants, accounting for 24% of the combined reproductive output of these 18 lineages. In the space of 6 years, this single genetic lineage expanded from one territory to occupy 12 of the 47 territories present in the population. This rate of expansion was over four times the population average for the same period. A multivariate analysis revealed that the success of a genetic lineage depended only on the number of high-quality territories surrounding the founder group. These results further demonstrate the resource-dependent nature of reproductive success in this species, and also highlight the potential importance of family dynasties in other cooperative species with complex social dynamics and dispersal patterns.
Resumo:
Computer simulation was used to suggest potential selection strategies for beef cattle breeders with different mixes of clients between two potential markets. The traditional market paid on the basis of carcass weight (CWT), while a new market considered marbling grade in addition to CWT as a basis for payment. Both markets instituted discounts for CWT in excess of 340 kg and light carcasses below 300 kg. Herds were simulated for each price category on the carcass weight grid for the new market. This enabled the establishment of phenotypic relationships among the traits examined [CWT, percent intramuscular fat (IMF), carcass value in the traditional market, carcass value in the new market, and the expected proportion of progeny in elite price cells in the new market pricing grid]. The appropriateness of breeding goals was assessed on the basis of client satisfaction. Satisfaction was determined by the equitable distribution of available stock between markets combined with the assessment of the utility of the animal within the market to which it was assigned. The best goal for breeders with predominantly traditional clients was a CWT in excess of 330 kg, while that for breeders with predominantly new market clients was a CWT of between 310 and 329 kg and with a marbling grade of AAA in the Ontario carcass pricing system. For breeders who wished to satisfy both new and traditional clients, the optimal CWT was 310-329 kg and the optimal marbling grade was AA-AAA. This combination resulted in satisfaction levels of greater than 75% among clients, regardless of the distribution of the clients between the traditional and new marketplaces.
Resumo:
The reproductive biology of the large-footed myotis, Myotis moluccarum, was studied during the annual breeding season in southeast Queensland, Australia. Previous research has shown the species to be polyoestrous and monotoccous, producing two consecutive young with some degree of synchrony in late October to early November and again in late January to early February. Hormonal data was collected and observations of the female reproductive tract made in order to ascertain the reproductive cycle of this species. In July, when females were not pregnant, progesterone concentrations were 1.9 +/- 0.9 ng/ml. During the two gestation periods, progesterone concentrations increased progressively until late pregnancy at the end of October through to early November and again in late January to early February. During the latest stages of pregnancy, progesterone concentrations of 69.9 +/- 18.7 ng/ml were reached. It is suggested that a plasma progesterone concentration in excess of about 8 ng/ml indicates pregnancy in this species. Plasma testosterone concentration in males reached a peak of 43.1 +/- 9.81 ng/ml in July, and was then variable until December when levels declined significantly to 2.0 +/- 1.7 ng/ml.