971 resultados para biological evolution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isopentenyl diphosphate (IPP) is the central intermediate in the biosynthesis of isoprenoids, the most ancient and diverse class of natural products. Two distinct routes of IPP biosynthesis occur in nature: the mevalonate pathway and the recently discovered deoxyxylulose 5-phosphate (DXP) pathway. The evolutionary history of the enzymes involved in both routes and the phylogenetic distribution of their genes across genomes suggest that the mevalonate pathway is germane to archaebacteria, that the DXP pathway is germane to eubacteria, and that eukaryotes have inherited their genes for IPP biosynthesis from prokaryotes. The occurrence of genes specific to the DXP pathway is restricted to plastid-bearing eukaryotes, indicating that these genes were acquired from the cyanobacterial ancestor of plastids. However, the individual phylogenies of these genes, with only one exception, do not provide evidence for a specific affinity between the plant genes and their cyanobacterial homologues. The results suggest that lateral gene transfer between eubacteria subsequent to the origin of plastids has played a major role in the evolution of this pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the ATRX gene on the human X chromosome cause X-linked α-thalassemia and mental retardation. XY patients with deletions or mutations in this gene display varying degrees of sex reversal, implicating ATRX in the development of the human testis. To explore further the role of ATRX in mammalian sex differentiation, the homologous gene was cloned and characterized in a marsupial. Surprisingly, active homologues of ATRX were detected on the marsupial Y as well as the X chromosome. The Y-borne copy (ATRY) displays testis-specific expression. This, as well as the sex reversal of ATRX patients, suggests that ATRY is involved in testis development in marsupials and may represent an ancestral testis-determining mechanism that predated the evolution of SRY as the primary mammalian male sex-determining gene. There is no evidence for a Y-borne ATRX homologue in mouse or human, implying that this gene has been lost in eutherians and its role supplanted by the evolution of SRY from SOX3 as the dominant determiner of male differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzymes participating in different metabolic pathways often have similar catalytic mechanisms and structures, suggesting their evolution from a common ancestral precursor enzyme. We sought to create a precursor-like enzyme for N′-[(5′-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) isomerase (HisA; EC 5.3.1.16) and phosphoribosylanthranilate (PRA) isomerase (TrpF; EC 5.3.1.24), which catalyze similar reactions in the biosynthesis of the amino acids histidine and tryptophan and have a similar (βα)8-barrel structure. Using random mutagenesis and selection, we generated several HisA variants that catalyze the TrpF reaction both in vivo and in vitro, and one of these variants retained significant HisA activity. A more detailed analysis revealed that a single amino acid exchange could establish TrpF activity on the HisA scaffold. These findings suggest that HisA and TrpF may have evolved from an ancestral enzyme of broader substrate specificity and underscore that (βα)8-barrel enzymes are very suitable for the design of new catalytic activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muconate lactonizing enzyme (MLE), a component of the β-ketoadipate pathway of Pseudomonas putida, is a member of a family of related enzymes (the “enolase superfamily”) that catalyze the abstraction of the α-proton of a carboxylic acid in the context of different overall reactions. New untwinned crystal forms of MLE were obtained, one of which diffracts to better than 2.0-Å resolution. The packing of the octameric enzyme in this crystal form is unusual, because the asymmetric unit contains three subunits. The structure of MLE presented here contains no bound metal ion, but is very similar to a recently determined Mn2+-bound structure. Thus, absence of the metal ion does not perturb the structure of the active site. The structures of enolase, mandelate racemase, and MLE were superimposed. A comparison of metal ligands suggests that enolase may retain some characteristics of the ancestor of this enzyme family. Comparison of other residues involved in catalysis indicates two unusual patterns of conservation: (i) that the position of catalytic atoms remains constant, although the residues that contain them are located at different points in the protein fold; and (ii) that the positions of catalytic residues in the protein scaffold are conserved, whereas their identities and roles in catalysis vary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cucumber mosaic virus (CMV) and tomato aspermy virus (TAV) belong to the Cucumovirus genus. They have a tripartite genome consisting of single-stranded RNAs, designated 1, 2, and 3. Previous studies have shown that viable pseudorecombinants could be created in vitro by reciprocal exchanges between CMV and TAV RNA 3, but exchanges of RNAs 1 and 2 were replication deficient. When we coinoculated CMV RNAs 2 and 3 along with TAV RNAs 1 and 2 onto Nicotiana benthamiana, a hybrid quadripartite virus appeared that consisted of TAV RNA 1, CMV RNAs 2 and 3, and a distinctive chimeric RNA originating from a recombination between CMV RNA 2 and the 3′-terminal 320 nucleotides of TAV RNA 2. This hybrid arose by means of segment reassortment and RNA recombination to produce an interspecific hybrid with the TAV helicase subunit and the CMV polymerase subunit. To our knowledge, this is the first report demonstrating the evolution of a new plant or animal virus strain containing an interspecific hybrid replicase complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general scheme is described for the in vitro evolution of protein catalysts in a biologically amplifiable system. Substrate is covalently and site specifically attached by a flexible tether to the pIII coat protein of a filamentous phage that also displays the catalyst. Intramolecular conversion of substrate to product provides a basis for selecting active catalysts from a library of mutants, either by release from or attachment to a solid support. This methodology has been developed with the enzyme staphylococcal nuclease as a model. An analysis of factors influencing the selection efficiency is presented, and it is shown that phage displaying staphylococcal nuclease can be enriched 100-fold in a single step from a library-like ensemble of phage displaying noncatalytic proteins. Additionally, this approach should allow one to functionally clone natural enzymes, based on their ability to catalyze specific reactions (e.g., glycosyl transfer, sequence-specific proteolysis or phosphorylation, polymerization, etc.) rather than their sequence- or structural homology to known enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor through which halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cause altered gene expression and toxicity. The AHR belongs to the basic helix–loop–helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulatory proteins, whose members play key roles in development, circadian rhythmicity, and environmental homeostasis; however, the normal cellular function of the AHR is not yet known. As part of a phylogenetic approach to understanding the function and evolutionary origin of the AHR, we sequenced the PAS homology domain of AHRs from several species of early vertebrates and performed phylogenetic analyses of these AHR amino acid sequences in relation to mammalian AHRs and 24 other members of the PAS family. AHR sequences were identified in a teleost (the killifish Fundulus heteroclitus), two elasmobranch species (the skate Raja erinacea and the dogfish Mustelus canis), and a jawless fish (the lamprey Petromyzon marinus). Two putative AHR genes, designated AHR1 and AHR2, were found both in Fundulus and Mustelus. Phylogenetic analyses indicate that the AHR2 genes in these two species are orthologous, suggesting that an AHR gene duplication occurred early in vertebrate evolution and that multiple AHR genes may be present in other vertebrates. Database searches and phylogenetic analyses identified four putative PAS proteins in the nematode Caenorhabditis elegans, including possible AHR and ARNT homologs. Phylogenetic analysis of the PAS gene family reveals distinct clades containing both invertebrate and vertebrate PAS family members; the latter include paralogous sequences that we propose have arisen by gene duplication early in vertebrate evolution. Overall, our analyses indicate that the AHR is a phylogenetically ancient protein present in all living vertebrate groups (with a possible invertebrate homolog), thus providing an evolutionary perspective to the study of dioxin toxicity and AHR function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although adaptive evolution is thought to depend primarily on mutations of small effect, major gene effects may underlie many of the important differences observed among species in nature. The Mexican axolotl (Ambystoma mexicanum) has a derived mode of development that is characterized by metamorphic failure (paedomorphosis), an adaptation for an entirely aquatic life cycle. By using an interspecific crossing design and genetic linkage analysis, a major quantitative trait locus for expression of metamorphosis was identified in a local map of amplified fragment length polymorphisms. These data are consistent with a major gene hypothesis for the evolution of paedomorphosis in A. mexicanum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gnathostome vertebrates have multiple members of the Dlx family of transcription factors that are expressed during the development of several tissues considered to be vertebrate synapomorphies, including the forebrain, cranial neural crest, placodes, and pharyngeal arches. The Dlx gene family thus presents an ideal system in which to examine the relationship between gene duplication and morphological innovation during vertebrate evolution. Toward this end, we have cloned Dlx genes from the lamprey Petromyzon marinus, an agnathan vertebrate that occupies a critical phylogenetic position between cephalochordates and gnathostomes. We have identified four Dlx genes in P. marinus, whose orthology with gnathostome Dlx genes provides a model for how this gene family evolved in the vertebrate lineage. Differential expression of these lamprey Dlx genes in the forebrain, cranial neural crest, pharyngeal arches, and sensory placodes of lamprey embryos provides insight into the developmental evolution of these structures as well as a model of regulatory evolution after Dlx gene duplication events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid evolution driven by positive Darwinian selection is a recurrent theme in male reproductive protein evolution. In contrast, positive selection has never been demonstrated for female reproductive proteins. Here, we perform phylogeny-based tests on three female mammalian fertilization proteins and demonstrate positive selection promoting their divergence. Two of these female fertilization proteins, the zona pellucida glycoproteins ZP2 and ZP3, are part of the mammalian egg coat. Several sites identified in ZP3 as likely to be under positive selection are located in a region previously demonstrated to be involved in species-specific sperm-egg interaction, suggesting the selective pressure is related to male-female interaction. The results provide long-sought evidence for two evolutionary hypotheses: sperm competition and sexual conflict.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a computational method to optimize the in vitro evolution of proteins. Simulating evolution with a simple model that statistically describes the fitness landscape, we find that beneficial mutations tend to occur at amino acid positions that are tolerant to substitutions, in the limit of small libraries and low mutation rates. We transform this observation into a design strategy by applying mean-field theory to a structure-based computational model to calculate each residue's structural tolerance. Thermostabilizing and activity-increasing mutations accumulated during the experimental directed evolution of subtilisin E and T4 lysozyme are strongly directed to sites identified by using this computational approach. This method can be used to predict positions where mutations are likely to lead to improvement of specific protein properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cuticular hydrocarbon (CH) pheromones in Drosophila melanogaster exhibit strong geographic variation. African and Caribbean populations have a high ratio of 5,9 heptacosadiene/7,11 heptacosadiene (the “High” CH type), whereas populations from all other areas have a low ratio (“Low” CH type). Based on previous genetic mapping, DNA markers were developed that localized the genetic basis of this CH polymorphism to within a 13-kb region. We then carried out a hierarchical search for diagnostic nucleotide sites starting with four lines, and increasing to 24 and 43 lines from a worldwide collection. Within the 13-kb region, only one variable site shows a complete concordance with the CH phenotype. This is a 16-bp deletion in the 5′ region of a desaturase gene (desat2) that was recently suggested to be responsible for the CH polymorphism on the basis of its expression [Dallerac, R., Labeur, C., Jallon, J.-M., Knipple, D. C., Roelofs, W. L. & Wicker-Thomas, C. (2000) Proc. Natl. Acad. Sci. 97, 9449–9454]. The cosmopolitan Low type is derived from the ancestral High type, and DNA sequence variations suggest that the former spread worldwide with the aid of positive selection. Whether this CH variation could be a component of the sexual isolation between Zimbabwe and other cosmopolitan populations remains an interesting and unresolved question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prion protein displays a unique structural ambiguity in that it can adopt multiple stable conformations under physiological conditions. In our view, this puzzling feature resulted from a sudden environmental change in evolution when the prion, previously an integral membrane protein, got expelled into the extracellular space. Analysis of known vertebrate prions unveils a primordial transmembrane protein encrypted in their sequence, underlying this relocalization hypothesis. Apparently, the time elapsed since this event was insufficient to create a “minimally frustrated” sequence in the new milieu, probably due to the functional constraints set by the importance of the very flexibility that was created in the relocalization. This scenario may explain why, in a structural sense, the prion protein is still en route toward becoming a foldable globular protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present here the description of genes coding for molluscan hemocyanins. Two distantly related mollusks, Haliotis tuberculata and Octopus dofleini, were studied. The typical architecture of a molluscan hemocyanin subunit, which is a string of seven or eight globular functional units (FUs, designated a to h, about 50 kDa each), is reflected by the gene organization: a series of eight structurally related coding regions in Haliotis, corresponding to FU-a to FU-h, with seven highly variable linker introns of 174 to 3,198 bp length (all in phase 1). In Octopus seven coding regions (FU-a to FU-g) are found, separated by phase 1 introns varying in length from 100 bp to 910 bp. Both genes exhibit typical signal (export) sequences, and in both cases these are interrupted by an additional intron. Each gene also contains an intron between signal peptide and FU-a and in the 3′ untranslated region. Of special relevance for evolutionary considerations are introns interrupting those regions that encode a discrete functional unit. We found that five of the eight FUs in Haliotis each are encoded by a single exon, whereas FU-f, FU-g, and FU-a are encoded by two, three and four exons, respectively. Similarly, in Octopus four of the FUs each correspond to an uninterrupted exon, whereas FU-b, FU-e, and FU-f each contain a single intron. Although the positioning of the introns between FUs is highly conserved in the two mollusks, the introns within FUs show no relationship either in location nor phase. It is proposed that the introns between FUs were generated as the eight-unit polypeptide evolved from a monomeric precursor, and that the internal introns have been added later. A hypothesis for evolution of the ring-like quaternary structure of molluscan hemocyanins is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe compartmentalized self-replication (CSR), a strategy for the directed evolution of enzymes, especially polymerases. CSR is based on a simple feedback loop consisting of a polymerase that replicates only its own encoding gene. Compartmentalization serves to isolate individual self-replication reactions from each other. In such a system, adaptive gains directly (and proportionally) translate into genetic amplification of the encoding gene. CSR has applications in the evolution of polymerases with novel and useful properties. By using three cycles of CSR, we obtained variants of Taq DNA polymerase with 11-fold higher thermostability than the wild-type enzyme or with a >130-fold increased resistance to the potent inhibitor heparin. Insertion of an extra stage into the CSR cycle before the polymerase reaction allows its application to enzymes other than polymerases. We show that nucleoside diphosphate kinase and Taq polymerase can form such a cooperative CSR cycle based on reciprocal catalysis, whereby nucleoside diphosphate kinase produces the substrates required for the replication of its own gene. We also find that in CSR the polymerase genes themselves evolve toward more efficient replication. Thus, polymerase genes and their encoded polypeptides cooperate to maximize postselection copy number. CSR should prove useful for the directed evolution of enzymes, particularly DNA or RNA polymerases, as well as for the design and study of in vitro self-replicating systems mimicking prebiotic evolution and viral replication.