901 resultados para bioavailability
Resumo:
Numerous health benefits have been attributed to cocoa and its derived products in the last decade including antioxidant, anti-platelet and positive effects on lipid metabolism and vascular function. Inflammation plays a key role in the initiation and progression of atherosclerosis. However, cocoa feeding trials focused on inflammation are still rare and the results yielded are controversial. Health effects derived from cocoa consumption have been partly attributed to its polyphenol content, in particular of flavanols. Bioavailability is a key issue for cocoa polyphenols in order to be able to exert their biological activities. In the case of flavanols, bioavailability is strongly influenced by several factors, such as their degree of polymerization and the food matrix in which the polyphenols are delivered. Furthermore, gut has become an active site for the metabolism of procyanidins (oligomeric and polymeric flavanols). Estimation of polyphenol consumption or exposure is also a very challenging task in Food and Nutrition Science in order to correlate the intake of phytochemicals with in vivo health effects. In the area of nutrition, modern analytical techniques based on mass spectrometry are leading to considerable advances in targeted metabolite analysis and particularly in Metabolomics or global metabolite analysis. In this chapter we have summarized the most relevant results of our recent research on the bioavailability of cocoa polyphenols in humans and the effect of the matrix in which cocoa polyphenols are delivered considering both targeted analysis and a metabolomic approach. Furthermore, we have also summarized the effect of long-term consumption of cocoa powder in patients at high risk of cardiovascular disease (CVD) on the inflammatory biomarkers of atherosclerosis.
Resumo:
The difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices. At clinically relevant Amiodarone concentrations, known to induce neurotoxicity in some patients during therapeutic treatment, a complete uptake was observed in both models in 24h, after single exposure. After repeated treatments, bioaccumulation was observed, especially in the 3D cell model, together with a greater alteration of neurotoxicity markers. After 14days, Amiodarone major oxidative metabolite (mono-N-desethylamiodarone) was detected at limited levels, indicating the presence of active drug metabolism enzymes (i.e. cytochrome P450) in both models. The assessment of biokinetics provides useful information on the relevance of in vitro toxicity data and should be considered in the design of an Integrated Testing Strategy aimed to identify specific neurotoxic alerts, and to improve the neurotoxicity assay predictivity for human acute and repeated exposure.
Resumo:
Marine environments are frequently exposed to oil spills as a result of transportation, oil drilling or fuel usage. Whereas large oil spills and their effects have been widely documented, more common and recurrent small spills typically escape attention. To fill this important gap in the assessment of oil-spill effects, we performed two independent supervised full sea releases of 5 m(3) of crude oil, complemented by on-board mesocosm studies and sampling of accidentally encountered slicks. Using rapid on-board biological assays, we detect high bioavailability and toxicity of dissolved and dispersed oil within 24 h after the spills, occurring fairly deep (8 m) below the slicks. Selective decline of marine plankton is observed, equally relevant for early stages of larger spills. Our results demonstrate that, contrary to common thinking, even small spills have immediate adverse biological effects and their recurrent nature is likely to affect marine ecosystem functioning.
Resumo:
The herbicides are being used in huge quantities for various porpouses. Once the herbicide finds its way into the environment, a major part of it comes in contact with soil. Humic substances are major organic constituents of soil. These substances may interact with herbicides in different modes and adsorption is probably the most important one. Adsorption will control the quantity of herbicide in the soil solution, and determines its persistence, leaching, mobility and bioavailability. In this work we studied the interaction between the herbicide 2,4D and soil in the presence and absence of organic matter. The methodology utilized for the determination of 2,4D was gas chromatography with eletron capture detector. The behavior of 2,4D was evaluated through Freundlich isotherms. It was verified that the herbicide 2,4D has a large adsorption in the humic acid .
Resumo:
Speciation studies of Fe, Cr, Co, Ni and Cu on reactive fraction (adsorved on oxides, hydroxides, carbonates and clay minerals) and pyrite were performed in Avicennia schaueriana and Rhizophora mangle sediments from Amapá shoreline-Brazil. The soil under Avicennia showed a higher heavy metal concentration in reactive fraction than under Rhizophora. The soil under Rhizophora showed low heavy metal bioavailability, having an increasing association with pyrite across sediment section.
Resumo:
The chelating agent EDTA (ethylenediaminetetraacetic acid) is a compound of massive use world wide with household and industrial applications, being one of the anthropogenic compounds with highest concentrations in inland European waters. In this review, the applications of EDTA and its behavior once it has been released into the environment are described. At a laboratory scale, degradation of EDTA has been achieved; however, in natural environments studies detect poor biodegradability. It is concluded that EDTA behaves as a persistent substance in the environment and that its contribution to heavy metals bioavailability and remobilization processes in the environment is a major concern.
Resumo:
The presence of metals in the sediments of Pampulha Lake was investigated in order to determine the bioavailability of metals in these sediments for the cultivation of vegetables such as lettuce. The chemical analyses of metals and As were accomplished by the k0 neutron activation technique. The plans for recovering this lake foresee the removal of the deposited sediments and transport of the discarded material to a specific area after the dam. The present study suggests that this strategy of discarding sediments doesn't imply any risk for the local population, in relation to the bioavailability of metals in these sediments.
Resumo:
Bisphosphonates are drugs that have been widely used in different bone diseases, and have recently been used successfully against many parasites. Various synthetic routes to prepare different types of bisphosphonates have been described, with distinct potency and pharmacological activity. A number of analytical techniques are currently being used to analyze these drugs; among these, the high performance liquid chromatography (HPLC), with different systems of detection, is worth highlighting. However, the development of more sensitive methods is still necessary, once they are essential for bioavailability and bioequivalence studies. This paper reports the major synthesis routes, chemical analysis methodologies and pharmacological applications of bisphosphonates.
Resumo:
A new solid phase microextraction (SPME) system, known as in-tube SPME, was recently developed using an open tubular fused-silica capilary column, instead of an SPME fiber, as the SPME device. On-line in-tube SPME is usually used in combination with high performance liquid chromatography. Drugs in biological samples are directly extracted and concentrated in the stationary phase of capillary columns by repeated draw/eject cycles of sample solution, and then directly transferred to the liquid chromatographic column. In-tube SPME is suitable for automation. Automated sample handling procedures not only shorten the total analysis time, but also usually provide better accuracy and precision relative to manual techniques. In-tube SPME has been demonstrated to be a very effective and highly sensitive technique to determine drugs in biological samples for various purposes such as therapeutic drug monitoring, clinical toxicology, bioavailability and pharmacokinetics.
Resumo:
The generation of reactive oxygen and nitrogen species (ROS and RNS) during metabolism is capable of damaging cellular biomolecules. To be protected against oxidative injury, cells evolved complex cellular defense mechanisms and the capability to use exogenous antioxidants to eliminate ROS/RNS. The potential role of micronutrients as antioxidants (vitamin C, vitamin E, carotenoids and poliphenols) has stimulated intense research efforts. In various human supplementation studies, however, these compounds presented pro-oxidant effects at high doses for most risk groups. Therefore, more studies about the bioavailability, tissue uptake, metabolism and biological activities should be performed before establishing recommendations for disease prevention.
Resumo:
The analytical method developed to evaluate tamoxifen in dog plasma samples was precise, accurate, robust and linear in the range of 5-200 ng/mL. The limits of detection and quantification were 0.981 ng/mL and 2.97 ng/mL, respectively. Besides, the intra-day precision and accuracy variations were 8.78 and 10.16%, respectively. Tamoxifen concentrations were analyzed by combined reversed phase liquid chromatography and UV detection (lambda=280 nm). The study was conducted using an open randomized 2-period crossover balanced design with a 1-week washout period between the doses. This simple, rapid and selective method is suitable for pharmacokinetic, bioavailability and bioequivalence studies.
Resumo:
Incidental ingestion of contaminated soils is a major route of Pb uptake by humans, especially by children. Lead speciation in soils controls its bioavailability. Bioavailability assessment requires the determination of the amount of absorbed lead if a contaminated soil is ingested. In vivo tests, which employ animals, are considered the best model to infer absorption of Pb. But they have some logistic limitations and several authors proposed in vitro methods, which simulate conditions of human digestion. Many of them present results which correlate with in vivo essays. Several authors consider in vitro tests a good and reliable alternative to infer lead bioavailability.
Resumo:
Phosphates have been used for lead immobilization in soils but the influence of soil type is not fully understood. In this work, lead chemical behaviour in two Brazilian latosoils (LA and LV) was studied via treatment with phosphates. The Pb concentration in Toxicity Characteristic Leaching Procedure (TCLP) solutions was decreased in all treatments. After treatment with H3PO4 the Pb concentration in the LA remained within the regulatory limit established by EPA. The ecotoxicological results with Daphnia pulex showed that this treatment reduced the lead bioavailability. Sequential extraction analyses showed that the lead was transferred from the most available to the residual fraction. Relevant decrease of soluble lead was observed in all phosphate treatments.
Detecção de contaminantes em espécie bioindicadora (Corbicula fluminea) - Rio Ribeira de Iguape - SP
Resumo:
The study assessed heavy metal concentrations in the tissue samples of Corbiculafluminea, by ICP-OES. In the tissues, average levels of 23.99 µg/g of Cu, 144.21 µg/g of Zn, 0.71 µg/g of Cd, 7.10 µg/g of Cr and 2.41 µg/g of Pb were detected ahowing that this last value is high and above the ANVISA reference (2.00 µg/g) for fish and other products. The results suggest that natural processes occuring in the Ribeira de Iguape River are not sufficient for purification so that metals remain in the water and can accumulate in the trophic chain.
Resumo:
Measurements of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) were combined in order to verify the ecological hazard of contaminated sediments from the Santos-Cubatão Estuarine System (SE Brazil), which is located in one of the most industrialized areas in the Latin America. Intertidal sediments from the Morrão River estuary were collected seasonally in short cores. The redox conditions, organic matter contents and grain-size were the main controlling factors on SEM distribution. However, clear relationships among these variables and AVS were not observed. The molar SEM/AVS ratios were frequently > 1 especially in the summer, suggesting major metal bioavailability hazard in this humid hot season.