963 resultados para beta adrenergic stimulation
Resumo:
Synbranchus marmoratus is a facultative air-breathing fish, which uses its buccal cavity as well as its gills for air-breathing. S. marmoratus shows a very pronounced tachycardia when it surfaces to air-breathe. An elevation of heart rate decreases cardiac filling time and therefore may cause a decline in stroke volume (VS), but this can be compensated for by an increase in venous tone to maintain stroke volume. Thus, the study on S. marmoratus was undertaken to investigate how stroke volume and venous function are affected during air-breathing. To this end we measured cardiac output (Q), heart rate (fH), central venous blood pressure (PCV), mean circulatory filling pressure (MCFP), and dorsal aortic blood pressures (PDA) in S. marmoratus. Measurements were performed in aerated water (P-O2 > 130 mmHg), when the fish alternated between gill ventilation and prolonged periods of apnoeas, as well as during hypoxia (P-O2 <= 50 mmHg), when the fish changed from gill ventilation to air-breathing. Q increased significantly during gill ventilation compared to apnoea in aerated water through a significant increase in both fH and VS. PCV and MCFP also increased significantly. During hypoxia, when the animals surface to ventilate air, we found a marked rise in fH, PCV, MCFP, Q and VS, whereas PDA decreased significantly. Simultaneous increases in PCV and MCFP in aerated, as well as in hypoxic water, suggests that the venous system plays an important regulatory role for cardiac filling and VS in this species. In addition, we investigated adrenergic regulation of the venous system through bolus infusions of adrenergic agonists (adrenaline, phenylephrine and isoproterenol; 2 mu g kg(-1)). Adrenaline and phenylephrine caused a marked rise in PCV and MCFP, whereas isoproterenol led to a marked decrease in PCV, and tended to decrease MCFP. Thus, it is evident that stimulation of both alpha- and beta-adrenoreceptors affects venous tone in S. marmoratus.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to verify, by means of functional methods, whether the circadian rhythm changes adrenergic response patterns in the epididymal half of the vas deferens isolated from control rats as well as from rats submitted to acute stress. The experiments were performed at 9:00 a.m., 3:00 p.m., 9:00 p.m., and 3:00 a.m. The results showed a light-dark dependent variation of the adrenergic response pattern on organs isolated from control as well as from stressed rats. In the control group, only the phenylephrine sensitivity was changed throughout the circadian rhythm. Under the stress condition, both norepinephrine and phenylephrine response patterns were changed, mainly during darkness. The maximal contractile response to both alpha- and beta-agonist and alpha(1)-agonist was increased in the dark phase, corresponding to high plasmatic concentrations of endogenous melatonin. The vas deferens isolated from stressed rats during the light phase simultaneously incubated with exogenous melatonin showed the same pattern of response obtained in the dark phase, thus indicating a peripheric action of melatonin on this organ. Therefore, the circadian rhythms are important to the adrenergic response pattern in rat vas deferens from both control and stressed rats. In conclusion, we suggest a melatonin modulation on alpha(1)-postsynaptic adrenergic response in the rat vas deferens. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae, has been found to enhance immune functions. This study investigated in vivo and in vitro effects of beta-glucan on lymphoproliferation and interferon-gamma (IFN-gamma) production by splenic cells from C57BL/6 female mice. All experiments were performed with particulate beta-glucan derived from S. cerevisiae. Data demonstrated that both, i.p administration of particulate beta-glucan (20 or 100 µg/animal) and in vitro stimulation of splenic cells (20 or 100 µg/ml of culture) decreased lymphoproliferation and IFN-gamma production induced by concanavalin A. These results suggest that beta-glucan can trigger a down-modulatory effect regulating a deleterious immune system hyperactivity in the presence of a strong stimulus.
Resumo:
We previously reported that truncation of the N-terminal 79 amino acids of alpha(1D)-adrenoceptors (Delta(1-79)alpha(1D)-ARs) greatly increases binding site density. In this study, we determined whether this effect was associated with changes in alpha(1D)-AR subcellular localization. Confocal imaging of green fluorescent protein (GFP)-tagged receptors and sucrose density gradient fractionation suggested that full-length alpha(1D)-ARs were found primarily in intracellular compartments, whereas Delta(1-79)alpha(1D)-ARs were translocated to the plasma membrane. This resulted in a 3- to 4-fold increase in intrinsic activity for stimulation of inositol phosphate formation by norepinephrine. We determined whether this effect was transplantable by creating N-terminal chimeras of alpha(1)-ARs containing the body of one subtype and the N terminus of another (alpha(1A) NT-D, alpha(1B) NT-D, alpha(1D) NT-A, and alpha(1D)NT-B). When expressed in human embryonic kidney 293 cells, radioligand binding revealed that binding densities of alpha(1A)- or alpha(1B)-ARs containing the alpha(1D)-N terminus decreased by 86 to 93%, whereas substitution of alpha(1A)- or alpha(1B)-N termini increased alpha(1D)-AR binding site density by 2- to 3-fold. Confocal microscopy showed that GFP-tagged alpha(1D)NT-B-ARs were found only on the cell surface, whereas GFP-tagged alpha(1B)NT-D-ARs were completely intracellular. Radioligand binding and confocal imaging of GFP-tagged alpha(1D)- and Delta(1-79)alpha(1D)-ARs expressed in rat aortic smooth muscle cells produced similar results, suggesting these effects are generalizable to cell types that endogenously express alpha(1D)-ARs. These findings demonstrate that the N-terminal region of alpha(1D)-ARs contain a transplantable signal that is critical for regulating formation of functional bindings, through regulating cellular localization.
Resumo:
Matrix metalloprotease-13 (MMP-13) or collagenase-3 is involved in a number of pathologic processes such as tumor metastasis and angiogenesis, osteoarthritis, rheumatoid arthritis and periodontal diseases. These conditions are associated with extensive degradation of both connective tissue and bone. This report examines gene regulation mechanisms and signal transduction pathways involved in Mmp-13 expression induced by proinflammatory cytokines in periodontal ligament (PDL) fibroblasts. Mmp-13 mRNA expression was increased 10.7 and 9.5 fold after stimulation with IL-1 beta (5 ng/mL) and TNF-alpha (10 ng/mL), respectively. However, inhibition of p38 MAPKinase with SB203580 resulted in significant (p < 0.001) induction (23.2 and 18.1 fold, respectively) of Mmp-13 mRNA as assessed by real time PCR. Negative regulation of IL-1 induced Mmp-13 expression was confirmed by inhibiting p38 MAPK gene expression with siRNA. Transient transfection of dominant negative forms of MKK3 and MKK6 also resulted in increased levels of Mmp-13 mRNA after IL-1 beta stimulation. Mmp-13 mRNA expression induced by TNF-alpha was decreased by JNK and ERK inhibition. Western blot and zymogram analysis indicated that Mmp-13 protein expression induced by the proinflammatory cytokines were also upregulated by inhibition of p38 MAPK. Reporter gene experiments using stable cell lines harboring 660-bp sequence of the murine Mmp-13 proximal promoter indicated that transcriptional mechanisms were at least partially involved in this negative regulation of Mmp-13 expression by p38 MAPK and upstream MKK3/6. These results suggest a negative transcriptional regulatory mechanism mediated by p38 MAPK and upstream MKK3/6 on Mmp-13 expression induced by proinflammatory cytokines in PDL fibroblasts. (c) 2005 Elsevier B.V./International Society of Matrix Biology. All rights reserved.
Resumo:
In the present study, noradrenaline (NOR, alpha-non-specific adrenergic agonist), clonidine (CLO, alpha(2)), phenylephrine (PHE, alpha(1)) or isoproterenol (ISO, beta-agonist) was injected in the medial septal area (MSA) of water-deprived, sodium-deplete or food-deprived rats. NOR (80, 160 nmol) inhibited the intake of 3% NaCl, water deprivation-induced and meal-associated water intake. Food deprivation-induced food intake and 10% sucrose intake were not altered by NOR. CLO (10, 20, 30, 40 nmol) inhibited (80-100% inhibition compared to control during 60 min) the intake of 3% NaCl, water deprivation-induced and meal-associated water intake. CLO had a weaker inhibition on food and 10% sucrose intake (30-50% less than the control during 60 and 15 min, respectively). PHE (160 nmol) inhibited 3% NaCl intake and 10% sucrose intake (30% less than the control for 15-30 min). ISO (160 nmol) did not after water or 3% NaCl intake. NOR induced an increase, CLO and ISO induced a decrease, and PHE no alteration in mean arterial pressure. NOR did not alter water or 3% NaCl intake when injected unilaterally into the caudate nucleus. The results suggest that NOR injected in the MSA acts on alpha(2)-adrenergic receptors inducing a specific inhibition of 3% NaCl and water intake. (C) 1997 Elsevier B.V.
Resumo:
In this study, we investigated the participation of adrenergic neurotransmission in angiotensin II- (ANGII)-induced water intake and urinary electrolyte excretion by means of injection of the alpha(1)-, alpha(2)-, and beta-adrenoceptor antagonists and ANGII into the medial preoptic area (MPOA) in rats. Prazosin (an alpha(1)-adrenergic antagonist) antagonized the water ingestion, Na+, K+ and urine excretion induced by ANGII, whereas yohimbine (an alpha(2)-adrenergic antagonist) enhanced the Na+, K+ and urine excretion induced by ANGII. Propranolol (a nonselective beta-adrenoceptor blocker) antagonized the water ingestion and enhanced the Na+ and urine excretion induced by ANGII. Previous treatment with prazosin reduced the presser responses to ANGII, whereas yohimbine had opposite effects. Previous injection of propranolol produced no effects in the presser responses to ANGII. These results suggest that the adrenergic neurotransmission in the MPOA may actively participate in ANGII-induced dipsogenesis, natriuresis, kaliuresis and diuresis in a process that involves alpha(1)-, alpha(2)-, and beta-adrenoceptors.
Resumo:
The effects of clonidine on sodium and potassium excretions were examined after previous administration of prazosin (an α 1-adrenergic receptor antagonist) and yohimbine (an α 2-adrenergic receptor antagonist) into the ventromedial nucleus of the hypothalamus of conscious rats. Clonidine injected into the ventromedial nucleus of the hypothalamus induced inhibitory and facilitatory effects on the urinary sodium and potassium excretions. The results suggest that facilitatory effects of clonidine on natriuresis and kaliuresis are mediated through activation of α 1-adrenoceptors and that inhibitory effects require α(2A)-adrenoceptors.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background and Objective: Antimicrobial peptides, such as beta-defensins, secreted by gingival epithelial cells, are thought to play a major role in preventing periodontal diseases. In the present study, we investigated the ability of green tea polyphenols to induce human beta-defensin (hBD) secretion in gingival epithelial cells and to protect hBDs from proteolytic degradation by Porphyromonas gingivalis.Material and Methods: Gingival epithelial cells were treated with various amounts (25-200 mu g/mL) of green tea extract or epigallocatechin-3-gallate (EGCG). The secretion of hBD1 and hBD2 was measured using ELISAs, and gene expression was quantified by real-time PCR. The treatments were also carried out in the presence of specific kinase inhibitors to identify the signaling pathways involved in hBD secretion. The ability of green tea extract and EGCG to prevent hBD degradation by proteases of P. gingivalis present in a bacterial culture supernatant was evaluated by ELISA.Results: The secretion of hBD1 and hBD2 was up-regulated, in a dose-dependent manner, following the stimulation of gingival epithelial cells with a green tea extract or EGCG. Expression of the hBD gene in gingival epithelial cells treated with green tea polyphenols was also increased. EGCG-induced secretion of hBD1 and hBD2 appeared to involve extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Lastly, green tea extract and EGCG prevented the degradation of recombinant hBD1 and hBD2 by a culture supernatant of P. gingivalis.Conclusion: Green tea extract and EGCG, through their ability to induce hBD secretion by epithelial cells and to protect hBDs from proteolytic degradation by P. gingivalis, have the potential to strengthen the epithelial antimicrobial barrier. Future clinical studies will indicate whether these polyphenols represent a valuable therapeutic agent for treating/preventing periodontal diseases.
Resumo:
Given the spread of antibiotic resistance in bacterial pathogens, antimicrobial peptides that can also modulate the immune response may be a novel approach for effectively controlling periodontal infections. In the present study, we used a three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) to investigate the anti-inflammatory properties of human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) and to determine whether these antimicrobial peptides can act in synergy. The 3D co-culture model composed of gingival fibroblasts embedded in a collagen matrix overlaid with gingival epithelial cells had a synergistic effect with respect to the secretion of IL-6 and IL-8 in response to LPS stimulation compared to fibroblasts and epithelial cells alone. The 3D co-culture model was stimulated with non-cytotoxic concentrations of hBD-3 (10 and 20 mu M) and LL-37 (0.1 and 0.2 mu M) individually and in combination in the presence of A. actinomycetemcomitans LPS. A multiplex ELISA assay was used to quantify the secretion of 41 different cytokines. hBD-3 and LL-37 acted in synergy to reduce the secretion of GRO-alpha, G-CSF, IP-10, IL-6, and MCP-1, but only had an additive effect on reducing the secretion of IL-8 in response to A. actinomycetemcomitans LPS stimulation. The present study showed that hBD-3 acted in synergy with LL-37 to reduce the secretion of cytokines by an LPS-stimulated 3D model of gingival mucosa. This combination of antimicrobial peptides thus shows promising potential as an adjunctive therapy for treating inflammatory periodontitis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)