942 resultados para azo dye
Resumo:
In the quest for harnessing more power from the sun for water treatment by photoelectrochemical degradation, we prepared a novel photoanode of exfoliated graphite (EG)-ZnO nanocomposite. The nanocomposite was characterised by X-ray diffractometry, energy dispersive spectroscopy, Brunauer-Emmett-Teller surface area analyser, thermal gravimetric analyser, and X-ray photoelectron spectroscopy. The EG-ZnO nanocomposite was fabricated into a photoanode and applied for the photoelectrochemical degradation of 0.1 x 10(-4) M eosin yellowish dye in 0.1 M Na2SO4 under visible light irradiation. The degradation was monitored with a visible spectrophotometer. The photoelectrochemical degradation process resulted in enhanced degradation efficiency of ca. 93 % with kinetic rate of 11.0 x 10(-3) min(-1) over photolysis and electrochemical oxidation processes which exhibited lower degradation efficiencies of 35 and 40 % respectively.
Macroporous three-dimensional graphene oxide foams for dye adsorption and antibacterial applications
Resumo:
Several reports illustrate the wide range applicability of graphene oxide (GO) in water remediation. However, a few layers of graphene oxide tend to aggregate under saline conditions thereby reducing its activity. The effects of aggregation can be minimized by having a random arrangement of GO layers in a three dimensional architecture. The current study emphasizes the potential benefits of highly porous, ultralight graphene oxide foams in environmental applications. These foams were prepared by a facile and cost effective lyophilization technique. The 3D architecture allowed the direct use of these foams in the removal of aqueous pollutants without any pretreatment such as ultrasonication. Due to its macroporous nature, the foams exhibited excellent adsorption abilities towards carcinogenic dyes such as rhodamine B (RB), malachite green (MG) and acriflavine (AF) with respective sorption capacities of 446, 321 and 228 mg g(-1) of foam. These foams were also further investigated for antibacterial activities against E. coli bacteria in aqueous and nutrient growth media. The random arrangement of GO layers in the porous foam architecture allowed it to exhibit excellent antibacterial activity even under physiological conditions by following the classical wrapping-perturbation mechanism. These results demonstrate the vast scope of GO foam in water remediation for both dye removal and antibacterial activity.
Resumo:
Recently ZnO nanowire films have been used in very promising and inexpensive dye-sensitized solar cells (DSSC). It was found that the performance of the devices can be enhanced by functionalising the nanowires with a thin metal oxide coating. This nm-scale shell is believed to tailor the electronic structure of the nanowire, and help the absorption of the dye. Core-shell ZnO nanowire structures are synthesised at low temperature (below 120°C) by consecutive hydrothermal growth steps. Different materials are investigated for the coating, including Mg, Al, Cs and Zr oxides. High resolution TEM is used to characterise the quality of both the nanowire core and the shell, and to monitor the thickness and the degree of crystallisation of the oxide coating. The interface between the nanowire core and the outer shell is investigated in order to understand the adhesion of the coating, and give valuable feedback for the synthesis process. Nanowire films are packaged into dye-sensitised solar cell prototypes; samples coated with ZrO2 and MgO show the largest enhancement in the photocurrent and open-circuit voltage and look very promising for further improvement. © 2010 IOP Publishing Ltd.
Resumo:
We report an organic/inorganic polymer composite based on the chemically hybridized photoconductor CdS-PVK nanocomposite doped with a new second-order optically nonlinear chromophore 1-n-butoxy-2-methyl-(4-p-nitrophenylazo)benzene (BMNPAB) and plasticizer 9-ethyl-carbazole (ECZ) to manifest a photorefractive (PR) effect. A detailed description of the synthesis and characterization of BMNPAB is presented. The poled film including PVK-10-CdS nanocomposite and BMNPAB exhibits a high second harmonic generation (SHG) coefficient of 31 pm/V The photoconductivity of PVK-CdS nanocomposite also was studied here. Two-beam coupling experiment clearly indicated an asymmetric optical energy exchange between two beams on the polymer composite at zero electrical field, and the two-beam coupling gain of 50.0 cm(-1) and diffraction efficiencv of 4.2% were obtained at 647.1 nm wavelength. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The optical constants of two cyanine dye films that we prepared were measured with a RAP-1-type (RAP is rotating analyzer and polarizer) spectroscopic ellipsometer. Toward making a simplified model for the wafers of a recordable compact disk (CD-R), we give their optimization designs developed with the cyanine dye films. in addition, the dynamic storage performances of two sample disks were tested by our dynamic storage testing system. Measurement results of the sample disks were obtained to test and verify our film designs. (C) 2000 Optical Society of America. OCIS codes: 160.4890, 160.4760, 210.4810.
Optical parameters and absorption of copper (II)-azo complexes thin films as optical recording media
Resumo:
Smooth thin films of three kinds of azo dyes of 2-(5'-tert-butyl-3'-azoxylisoxazole)-1, 3-diketones and their copper (II)-azo complexes were prepared by the spin-coating method. Absorption spectra of the thin films on a glass substrate in the 300-600 nm wavelength region were measured. Optical constants (complex refractive index N=n+ik) and thickness of the thin films prepared on single-crystal silicon substrate in the 300-600 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constants epsilon(epsilon=epsilon(1)+i epsilon(2)), absorption coefficients alpha as well as reflectance R of thin films were then calculated. In addition, one of the copper (II)-azo complex thin film prepared on glass substrate with an Ag reflective layer was also studied by atomic force microscopy (AFM) and static optical recording. AFM study shows that the copper (II)-azo complex thin film is very smooth and has a root mean square surface roughness of 1.89 nm. Static optical recording shows that the recording marks on the copper (II)-azo complex thin film are very clear and circular, and the size of the minimal recording marks can reach 200 nm. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Smooth thin films of three kinds of nickel(II)-azo complexes were prepared by the spin-coating method. Absorption spectra of the thin films on K9 glass substrate in the 300-600 nn wavelength region were measured. Optical constants (complex refractive index N = n + ik) and thickness of the thin films prepared on single-crystal silicon substrate in the 300-600 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constants epsilon (epsilon = epsilon(1) + i epsilon(2)), absorption coefficients a as well as reflectance R of thin films were then calculated at 405 nm. In addition, in order to examine the possible use of nickel(II)-azo complex thin film as an optical recording medium, one of the nickel(II)-azo complex thin film prepared on K9 glass substrate with an Ag reflective layer was also studied by atomic force microscopy and static optical recording. The results show that the nickel(II)-azo complex thin film is smooth and has a root mean square surface roughness of 2.25 nm, and the recording marks on the nickel(II)-azo complex thin film are very clear and circular, and their size can reach 200 nn or less. (c) 2006 Elsevier Ltd. All rights reserved.