781 resultados para atmospheres
Resumo:
Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models and better estimate of the Earth radiative budget. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasis on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice particle effective radius. Note that the differences among some retrieval products are even larger than the prescribed uncertainties reported by the retrieval algorithm developers. It is shown that most of these large differences have their roots in the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.
Resumo:
A multimodel assessment of the performance of chemistry-climate models (CCMs) in the extratropical upper troposphere/lower stratosphere (UTLS) is conducted for the first time. Process-oriented diagnostics are used to validate dynamical and transport characteristics of 18 CCMs using meteorological analyses and aircraft and satellite observations. The main dynamical and chemical climatological characteristics of the extratropical UTLS are generally well represented by the models, despite the limited horizontal and vertical resolution. The seasonal cycle of lowermost stratospheric mass is realistic, however with a wide spread in its mean value. A tropopause inversion layer is present in most models, although the maximum in static stability is located too high above the tropopause and is somewhat too weak, as expected from limited model resolution. Similar comments apply to the extratropical tropopause transition layer. The seasonality in lower stratospheric chemical tracers is consistent with the seasonality in the Brewer-Dobson circulation. Both vertical and meridional tracer gradients are of similar strength to those found in observations. Models that perform less well tend to use a semi-Lagrangian transport scheme and/or have a very low resolution. Two models, and the multimodel mean, score consistently well on all diagnostics, while seven other models score well on all diagnostics except the seasonal cycle of water vapor. Only four of the models are consistently below average. The lack of tropospheric chemistry in most models limits their evaluation in the upper troposphere. Finally, the UTLS is relatively sparsely sampled by observations, limiting our ability to quantitatively evaluate many aspects of model performance.
Resumo:
The global behavior of the extratropical tropopause transition layer (ExTL) is investigated using O3, H2O, and CO measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada’s SCISAT-1 satellite obtained between February 2004 and May 2007. The ExTL depth is derived using H2O-O3 and CO-O3 correlations. The ExTL top derived from H2O-O3 shows an increase from roughly 1–1.5 km above the thermal tropopause in the subtropics to 3–4 km (2.5–3.5 km) in the north (south) polar region, implying somewhat weaker tropospherestratosphere- transport in the Southern Hemisphere. The ExTL bottom extends ~1 km below the thermal tropopause, indicating a persistent stratospheric influence on the troposphere at all latitudes. The ExTL top derived from the CO-O3 correlation is lower, at 2 km or ~345 K (1.5 km or ~335 K) in the Northern (Southern) Hemisphere. Its annual mean coincides with the relative temperature maximum just above the thermal tropopause. The vertical CO gradient maximizes at the thermal tropopause, indicating a local minimum in mixing within the tropopause region. The seasonal changes in and the scales of the vertical H2O gradients show a similar pattern as the static stability structure of the tropopause inversion layer (TIL), which provides observational support for the hypothesis that H2O plays a radiative role in forcing and maintaining the structure of the TIL.
Resumo:
We present an approach for dealing with coarse-resolution Earth observations (EO) in terrestrial ecosystem data assimilation schemes. The use of coarse-scale observations in ecological data assimilation schemes is complicated by spatial heterogeneity and nonlinear processes in natural ecosystems. If these complications are not appropriately dealt with, then the data assimilation will produce biased results. The “disaggregation” approach that we describe in this paper combines frequent coarse-resolution observations with temporally sparse fine-resolution measurements. We demonstrate the approach using a demonstration data set based on measurements of an Arctic ecosystem. In this example, normalized difference vegetation index observations are assimilated into a “zero-order” model of leaf area index and carbon uptake. The disaggregation approach conserves key ecosystem characteristics regardless of the observation resolution and estimates the carbon uptake to within 1% of the demonstration data set “truth.” Assimilating the same data in the normal manner, but without the disaggregation approach, results in carbon uptake being underestimated by 58% at an observation resolution of 250 m. The disaggregation method allows the combination of multiresolution EO and improves in spatial resolution if observations are located on a grid that shifts from one observation time to the next. Additionally, the approach is not tied to a particular data assimilation scheme, model, or EO product and can cope with complex observation distributions, as it makes no implicit assumptions of normality.
Resumo:
Trends in the position of the DJF Austral jet have been analysed for multi-model ensemble simulations of a subset of high- and low-top models for the periods 1960-2000, 2000-2050, and 2050-2098 under the CMIP5 historical, RCP4.5, and RCP8.5 scenarios. Comparison with ERA-Interim, CFSR and the NCEP/NCAR reanalysis shows that the DJF and annual mean jet positions in CMIP5 models are equatorward of reanalyses for the 1979-2006 mean. Under the RCP8.5 scenario, the mean jet position in the high-top models moves 3 degrees poleward of its 1860-1900 position by 2098, compared to just over 2 degrees for the low-top models. Changes in jet position are linked to changes in the meridional temperature gradient. Compared to low-top models, the high-top models predict greater warming in the tropical upper troposphere due to increased greenhouse gases for all periods considered: up to 0.28 K/decade more in the period 2050-2098 under the RCP8.5 scenario. Larger polar lower-stratospheric cooling is seen in high-top models: -1.64 K/decade compared to -1.40 K/decade in the period 1960-2000, mainly in response to ozone depletion, and -0.41 K/decade compared to -0.12 K/decade in the period 2050-2098, mainly in response to increases in greenhouse gases. Analysis suggests that there may be a linear relationship between the trend in jet position and meridional temperature gradient, even under strong forcing. There were no clear indications of an approach to a geometric limit on the absolute magnitude of the poleward shift by 2100.
Resumo:
There has been considerable interest in the climate impact of trends in stratospheric water vapor (SWV). However, the representation of the radiative properties of water vapor under stratospheric conditions remains poorly constrained across different radiation codes. This study examines the sensitivity of a detailed line-by-line (LBL) code, a Malkmus narrow-band model and two broadband GCM radiation codes to a uniform perturbation in SWV in the longwave spectral region. The choice of sampling rate in wave number space (Δν) in the LBL code is shown to be important for calculations of the instantaneous change in heating rate (ΔQ) and the instantaneous longwave radiative forcing (ΔFtrop). ΔQ varies by up to 50% for values of Δν spanning 5 orders of magnitude, and ΔFtrop varies by up to 10%. In the three less detailed codes, ΔQ differs by up to 45% at 100 hPa and 50% at 1 hPa compared to a LBL calculation. This causes differences of up to 70% in the equilibrium fixed dynamical heating temperature change due to the SWV perturbation. The stratosphere-adjusted radiative forcing differs by up to 96% across the less detailed codes. The results highlight an important source of uncertainty in quantifying and modeling the links between SWV trends and climate.
Resumo:
Observational evidence indicates significant regional trends in solar radiation at the surface in both all-sky and cloud-free conditions. Negative trends in the downwelling solar surface irradiance (SSI) have become known as ‘dimming’ while positive trends have become known as ‘brightening’. We use the Met Office Hadley Centre HadGEM2 climate model to model trends in cloud-free and total SSI from the pre-industrial to the present-day and compare these against observations. Simulations driven by CMIP5 emissions are used to model the future trends in dimming/brightening up to the year 2100. The modeled trends are reasonably consistent with observed regional trends in dimming and brightening which are due to changes in concentrations in anthropogenic aerosols and, potentially, changes in cloud cover owing to the aerosol indirect effects and/or cloud feedback mechanisms. The future dimming/brightening in cloud-free SSI is not only caused by changes in anthropogenic aerosols: aerosol impacts are overwhelmed by a large dimming caused by increases in water vapor. There is little trend in the total SSI as cloud cover decreases in the climate model used here, and compensates the effect of the change in water vapor. In terms of the surface energy balance, these trends in SSI are obviously more than compensated by the increase in the downwelling terrestrial irradiance from increased water vapor concentrations. However, the study shows that while water vapor is widely appreciated as a greenhouse gas, water vapor impacts on the atmospheric transmission of solar radiation and the future of global dimming/brightening should not be overlooked.
Resumo:
An assessment of the fifth Coupled Models Intercomparison Project (CMIP5) models’ simulation of the near-surface westerly wind jet position and strength over the Atlantic, Indian and Pacific sectors of the Southern Ocean is presented. Compared with reanalysis climatologies there is an equatorward bias of 3.7° (inter-model standard deviation of ± 2.2°) in the ensemble mean position of the zonal mean jet. The ensemble mean strength is biased slightly too weak, with the largest biases over the Pacific sector (-1.6±1.1 m/s, 27 -22%). An analysis of atmosphere-only (AMIP) experiments indicates that 41% of the zonal mean position bias comes from coupling of the ocean/ice models to the atmosphere. The response to future emissions scenarios (RCP4.5 and RCP8.5) is characterized by two phases: (i) the period of most rapid ozone recovery (2000-2049) during which there is insignificant change in summer; and (ii) the period 2050-2098 during which RCP4.5 simulations show no significant change but RCP8.5 simulations show poleward shifts (0.30, 0.19 and 0.28°/decade over the Atlantic, Indian and Pacific sectors respectively), and increases in strength (0.06, 0.08 and 0.15 m/s/decade respectively). The models with larger equatorward position biases generally show larger poleward shifts (i.e. state dependence). This inter-model relationship is strongest over the Pacific sector (r=-0.89) and insignificant over the Atlantic sector (r=-0.50). However, an assessment of jet structure shows that over the Atlantic sector jet shift is significantly correlated with jet width whereas over the Pacific sector the distance between the sub-polar and sub-tropical westerly jets appears to be more important.
Resumo:
The latest Hadley Centre climate model, HadGEM2-ES, includes Earth system components such as interactive chemistry and eight species of tropospheric aerosols. It has been run for the period 1860–2100 in support of the fifth phase of the Climate Model Intercomparison Project (CMIP5). Anthropogenic aerosol emissions peak between 1980 and 2020, resulting in a present-day all-sky top of the atmosphere aerosol forcing of −1.6 and −1.4 W m−2 with and without ammonium nitrate aerosols, respectively, for the sum of direct and first indirect aerosol forcings. Aerosol forcing becomes significantly weaker in the 21st century, being weaker than −0.5 W m−2 in 2100 without nitrate. However, nitrate aerosols become the dominant species in Europe and Asia and decelerate the decrease in global mean aerosol forcing. Considering nitrate aerosols makes aerosol radiative forcing 2–4 times stronger by 2100 depending on the representative concentration pathway, although this impact is lessened when changes in the oxidation properties of the atmosphere are accounted for. Anthropogenic aerosol residence times increase in the future in spite of increased precipitation, as cloud cover and aerosol-cloud interactions decrease in tropical and midlatitude regions. Deposition of fossil fuel black carbon onto snow and ice surfaces peaks during the 20th century in the Arctic and Europe but keeps increasing in the Himalayas until the middle of the 21st century. Results presented here confirm the importance of aerosols in influencing the Earth's climate, albeit with a reduced impact in the future, and suggest that nitrate aerosols will partially replace sulphate aerosols to become an important anthropogenic species in the remainder of the 21st century.
Resumo:
Atmospheric Rivers (ARs), narrow plumes of enhanced moisture transport in the lower troposphere, are a key synoptic feature behind winter flooding in midlatitude regions. This article develops an algorithm which uses the spatial and temporal extent of the vertically integrated horizontal water vapor transport for the detection of persistent ARs (lasting 18 h or longer) in five atmospheric reanalysis products. Applying the algorithm to the different reanalyses in the vicinity of Great Britain during the winter half-years of 1980–2010 (31 years) demonstrates generally good agreement of AR occurrence between the products. The relationship between persistent AR occurrences and winter floods is demonstrated using winter peaks-over-threshold (POT) floods (with on average one flood peak per winter). In the nine study basins, the number of winter POT-1 floods associated with persistent ARs ranged from approximately 40 to 80%. A Poisson regression model was used to describe the relationship between the number of ARs in the winter half-years and the large-scale climate variability. A significant negative dependence was found between AR totals and the Scandinavian Pattern (SCP), with a greater frequency of ARs associated with lower SCP values.
Resumo:
The final warming date of the polar vortex is a key component of Southern Hemisphere stratospheric and tropospheric variability in spring and summer. We examine the effect of external forcings on Southern Hemisphere final warming date, and the sensitivity of any projected changes to model representation of the stratosphere. Final warming date is calculated using a temperature-based diagnostic for ensembles of high- and low-top CMIP5 models, under the CMIP5 historical, RCP4.5, and RCP8.5 forcing scenarios. The final warming date in the models is generally too late in comparison with those from reanalyses: around two weeks too late in the low-top ensemble, and around one week too late in the high-top ensemble. Ensemble Empirical Mode Decomposition (EEMD) is used to analyse past and future change in final warming date. Both the low- and high-top ensemble show characteristic behaviour expected in response to changes in greenhouse gas and stratospheric ozone concentrations. In both ensembles, under both scenarios, an increase in final warming date is seen between 1850 and 2100, with the latest dates occurring in the early twenty-first century, associated with the minimum in stratospheric ozone concentrations in this period. However, this response is more pronounced in the high-top ensemble. The high-top models show a delay in final warming date in RCP8.5 that is not produced by the low-top models, which are shown to be less responsive to greenhouse gas forcing. This suggests that it may be necessary to use stratosphere resolving models to accurately predict Southern Hemisphere surface climate change.
Resumo:
The impact of stratospheric ozone on the tropospheric general circulation of the Southern Hemisphere (SH) is examined with a set of chemistry‐climate models participating in the Stratospheric Processes and their Role in Climate (SPARC)/Chemistry‐Climate Model Validation project phase 2 (CCMVal‐2). Model integrations of both the past and future climates reveal the crucial role of stratospheric ozone in driving SH circulation change: stronger ozone depletion in late spring generally leads to greater poleward displacement and intensification of the tropospheric midlatitude jet, and greater expansion of the SH Hadley cell in the summer. These circulation changes are systematic as poleward displacement of the jet is typically accompanied by intensification of the jet and expansion of the Hadley cell. Overall results are compared with coupled models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), and possible mechanisms are discussed. While the tropospheric circulation response appears quasi‐linearly related to stratospheric ozone changes, the quantitative response to a given forcing varies considerably from one model to another. This scatter partly results from differences in model climatology. It is shown that poleward intensification of the westerly jet is generally stronger in models whose climatological jet is biased toward lower latitudes. This result is discussed in the context of quasi‐geostrophic zonal mean dynamics.
Resumo:
We use observations of N2O and mean age to identify realistic transport in models in order to explain their ozone predictions. The results are applied to 15 chemistry climate models (CCMs) participating in the 2010 World Meteorological Organization ozone assessment. Comparison of the observed and simulated N2O, mean age and their compact correlation identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. This process‐oriented diagnostic is more useful than mean age alone because it identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. The diagnosed model transport behavior is related to a model’s ability to produce realistic lower stratosphere (LS) O3 profiles. Models with the greatest tropical transport problems compare poorly with O3 observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the Stratospheric Processes and their Role in Climate (SPARC) CCMVal Report to explain the range of CCM predictions for the return‐to‐1980 dates for global (60°S–60°N) and Antarctic column ozone. Antarctic O3 return dates are generally correlated with vortex Cly levels, and vortex Cly is generally correlated with the model’s circulation, although model Cl chemistry and conservation problems also have a significant effect on return date. In both regions, models with good LS transport and chemistry produce a smaller range of predictions for the return‐to‐1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily broad due to identifiable model deficiencies.
Resumo:
The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from 14 chemistry‐climate models, driven by prescribed levels of halogens and greenhouse gases. There is general agreement among the models that total column ozone reached a minimum around year 2000 at all latitudes, projected to be followed by an increase over the first half of the 21st century. In the second half of the 21st century, ozone is projected to continue increasing, level off, or even decrease depending on the latitude. Separation into partial columns above and below 20 hPa reveals that these latitudinal differences are almost completely caused by differences in the model projections of ozone in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and is projected to return to 1960 levels well before the end of the century, although there is a spread among models in the dates that ozone returns to specific historical values. We find decreasing halogens and declining upper atmospheric temperatures, driven by increasing greenhouse gases, contribute almost equally to increases in upper stratospheric ozone. In the tropical lower stratosphere, an increase in upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in most of the models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century, returning to 1960 levels well before the end of the century in most models.
Resumo:
[1] We have implemented a process-based isoprene emission model in the HadGEM2 Earth-system model with coupled atmospheric chemistry in order to examine the feedback between isoprene emission and climate. Isoprene emissions and their impact on atmospheric chemistry and climate are estimated for preindustrial (1860–1869), present-day (2000–2009), and future (2100–2109) climate conditions. The estimate of 460 TgC/yr for present-day global total isoprene emission is consistent with previous estimates. Preindustrial isoprene emissions are estimated to be 26% higher than present-day. Future isoprene emissions using the RCP8.5 scenario are similar to present-day because increased emissions resulting from climate warming are countered by CO2 inhibition of isoprene emissions. The impact of biogenic isoprene emissions on the global O3 burden and CH4 lifetime is small but locally significant, and the impact of changes in isoprene emissions on atmospheric chemistry depends strongly on the state of climate and chemistry.