935 resultados para asymmetrical pumping
Resumo:
The commercial development of ocean thermal energy conversion (OTEC) operations will involve some environmental perturbations for which there is no precedent experience. The pumping of very large volumes of warm surface water and cold deep water and its subsequent discharge will result in the impingement, entrainment, and redistribution of biota. Additional stresses to biota will be caused by biocide usage and temperature depressions. However, the artificial upwelling of nutrients associated with the pumping of cold deep water, and the artificial reef created by an OTEC plant may have positive effects on the local environment. Although more detailed information is needed to assess the net effect of an OTEC operation on fisheries, certain assumptions and calculations are made supporting the conclusion that the potential risk to fisheries is not significant enough to deter the early development of IDEe. It will be necessary to monitor a commercial-scale plant in order to remove many of the remaining uncertainties. (PDF file contains 39 pages.)
Resumo:
Estimation of the water content of herring landings caused by pressure-vacuum double tank pumps and using of multi purpose transport containers About 80 % of herring that is landed in the fish processing company Euro-Baltic Fischverarbeitungs GmbH Mukran, on the Isle of Rügen at the Baltic coast is transported from the cutter into the processing plant by pumping. For this purpose 700 l-Euro-size polyethylene tubs (containers) are filled with herring by means of a pressure-vacuum pump-systems during the unloading of the cutter. To be able to pump the fish from the hold on board it is kept floating in water (transport water). At the end of the pumping/transporting process the fish ends in a dewatering box before reaching the tub, where the transport water is separated from the fish. Then, the not completely dewatered fish is slipped into the transport containers. The amount of transport water reaching the containers depends on the type of PV-equipment and on the amount of transport water in the fish holds of the different cutters. Methodologically the mixture of fish and water must be weighed together. For the experiments specially designed transport container were used which allow the measurement of the run-off of the water to be quantified and thus to measure the proportion of water remaining with the fish. Based on 30 experiments it could be shown that on average 6 % of remaining weight of the mixture is water. Furthermore, factors were detected which influence the variability of the proportion of water.
Resumo:
Poly(dimethylsiloxane) (PDMS) is usually considered as a dielectric material and the PDMS microchannel wall can be treated as an electrically insulated boundary in an applied electric field. However, in certain layouts of microfluidic networks, electrical leakage through the PDMS microfluidic channel walls may not be negligible, which must be carefully considered in the microfluidic circuit design. In this paper, we report on the experimental characterization of the electrical leakage current through PDMS microfluidic channel walls of different configurations. Our numerical and experimental studies indicate that for tens of microns thick PDMS channel walls, electrical leakage through the PDMS wall could significantly alter the electrical field in the main channel. We further show that we can use the electrical leakage through the PDMS microfluidic channel wall to control the electrolyte flow inside the microfluidic channel and manipulate the particle motion inside the microfluidic channel. More specifically, we can trap individual particles at different locations inside the microfluidic channel by balancing the electroosmotic flow and the electrophoretic migration of the particle.
Resumo:
A 32.1 W laser-diode-stack pumped acoustic-optic Q-switched Nd:YVO4 slab laser with hybrid resonator at 1064 nm was demonstrated with the pumping power of 112 W and repetition rate of 40 kHz, the pulse duration was 32.47 ns. The slope efficiency and optical-to-optical efficiency were 37 and 28.7%, respectively. At the repetition rate of 20 kHz and pumping power of 90 W, the average output power and pulse duration were 20.4 W and 20.43 ns, respectively. With the pumping power of 112 W, the beam quality M-2 factors in CW operation were measured to be 1.3 in stable direction and 1.6 in unstable direction.
Resumo:
The effect of temporal synchronization between the chirped signal pulse and the pumping pulse in an optical parametric chirped pulse amplification laser system is researched theoretically and experimentally. The results show that the gain of optical parametric amplification is sensitive to the temporal synchronization. Therefore, accurate temporal synchronization between the chirped signal pulse and the pumping pulse is essential to obtain high optical parametric amplification gain and stable output from an optical parametric chirped pulse amplification laser. Based on our 16.7-TW/120-fs optical parametric chirped pulse amplification laser system with similar to1-ns pumping pulse duration and <10-ps time jitter between the signal and pumping pulse, the effect of the temporal synchronization on optical parametric chirped pulse amplification is demonstrated. The experimental results agree with the calculation. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Near-degenerative near-collinear phase-match geometry for broadband optical parametric chirped-pulse amplification (OPCPA) at approximate to 780 nm is calculated in comparison with nondegenerate noncollinear phase-match geometry. In an experiment on LBO-I near-degenerate near-collinear OPCPA, high gain with broad gain bandwidth (approximate to 71 nm, FWHM) at approximate to 780 nm is achieved by using an approximate to 390-nm pumping pulse. The stretched broadband chirped signal pulse near 780 nm is amplified to approximate to 412 mu J with a pumping energy of approximate to 15 mJ, and the total gain is > 3.7 X 10(6), which agrees well with the calculation. For a broadband (covering approximate to 100 nm) chirped signal pulse, the theoretical gain bandwidth has been attained experimentally for the first time. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Gold Coast Water is responsible for the management of the water and wastewater assets of the City of the Gold Coast on Australia’s east coast. Treated wastewater is released at the Gold Coast Seaway on an outgoing tide in order for the plume to be dispersed before the tide changes and renters the Broadwater estuary. Rapid population growth over the past decade has placed increasing demands on the receiving waters for the release of the City’s effluent. The Seaway SmartRelease Project is designed to optimise the release of the effluent from the City’s main wastewater treatment plant in order to minimise the impact of the estuarine water quality and maximise the cost efficiency of pumping. In order to do this an optimisation study that involves water quality monitoring, numerical modelling and a web based decision support system was conducted. An intensive monitoring campaign provided information on water levels, currents, winds, waves, nutrients and bacterial levels within the Broadwater. These data were then used to calibrate and verify numerical models using the MIKE by DHI suite of software. The decision support system then collects continually measured data such as water levels, interacts with the WWTP SCADA system, runs the models in forecast mode and provides the optimal time window to release the required amount of effluent from the WWTP. The City’s increasing population means that the length of time available for releasing the water with minimal impact may be exceeded within 5 years. Optimising the release of the treated water through monitoring, modelling and a decision support system has been an effective way of demonstrating the limited environmental impact of the expected short term increase in effluent disposal procedures. (PDF contains 5 pages)
Resumo:
Near-degenerative near-collinear phase-match geometry for broadband optical parametric chirped-pulse amplification (OPCPA) at approximate to 780 nm is calculated in comparison with nondegenerate noncollinear phase-match geometry. In an experiment on LBO-I near-degenerate near-collinear OPCPA, high gain with broad gain bandwidth (approximate to 71 nm, FWHM) at approximate to 780 nm is achieved by using an approximate to 390-nm pumping pulse. The stretched broadband chirped signal pulse near 780 nm is amplified to approximate to 412 mu J with a pumping energy of approximate to 15 mJ, and the total gain is > 3.7 X 10(6), which agrees well with the calculation. For a broadband (covering approximate to 100 nm) chirped signal pulse, the theoretical gain bandwidth has been attained experimentally for the first time. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Unremitting waves and occasional storms bring dynamic forces to bear on the coast. Sediment flux results in various patterns of erosion and accretion, with an overwhelming majority (80 to 90 percent) of coastline in the eastern U.S. exhibiting net erosion in recent decades. Climate change threatens to increase the intensity of storms and raise sea level 18 to 59 centimeters over the next century. Following a lengthy tradition of economic models for natural resource management, this paper provides a dynamic optimization model for managing coastal erosion and explores the types of data necessary to employ the model for normative policy analysis. The model conceptualizes benefits of beach and dune sediments as service flows accruing to nearby residential property owners, local businesses, recreational beach users, and perhaps others. Benefits can also include improvements in habitat for beach- and dune-dependent plant and animal species. The costs of maintaining beach sediment in the presence of coastal erosion include expenditures on dredging, pumping, and placing sand on the beach to maintain width and height. Other costs can include negative impacts on the nearshore environment. Employing these constructs, an optimal control model is specified that provides a framework for identifying the conditions under which beach replenishment enhances economic welfare and an optimal schedule for replenishment can be derived under a constant sea level and erosion rate (short term) as well as an increasing sea level and erosion rate (long term). Under some simplifying assumptions, the conceptual framework can examine the time horizon of management responses under sea level rise, identifying the timing of shift to passive management (shoreline retreat) and exploring factors that influence this potential shift. (PDF contains 4 pages)
Resumo:
针对啁啾脉冲放大技术建成的钛宝石激光装置,提出一种获得高重复率激光脉冲列的方法.通过改变钛宝石再生放大器中泡克耳斯盒电光开关的传统工作模式,使得腔内放大的脉冲从某特定时刻起,每当在腔内往返一次就以一定的倒出比例(倒出率)倒出腔内脉冲能量的一部分,从而可以在有限的时间段内产生高重复率的啁啾激光脉冲列.基于Franz-Nodvik放大理论,建立了该高重复率再生放大器的理论模型,通过数值计算,系统地分析了初始增益、倒出时刻、倒出率对输出的脉冲序列的影响.在抽运功率为35mJ、倒出率为1/2的实验条件下,通过腔外
Resumo:
It is shown that in a closed equispaced three-level ladder system, by controlling the relative phase of two applied coherent fields, the conversion from absorption with inversion to lasing without inversion (LWI) can be realized; a large index of the refraction with zero absorption can be gotten; considerable increasing of the spectrum region and value of the LWI gain can be achieved. Our study also reveals that the incoherent pumping will produce a remarkable effect oil the phase-dependent properties of the system. Modifying value of the incoherent pumping can change the property of the system from absorption to amplification and enhance significantly LWI gain. If the incoherent pumping is absent, we cannot get any gain for any value of the relative phase. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
We demonstrated optical amplification at 1550 nm with a carbon tetrachloride solution of Er3+-Yb3+ codoped NaYF4 nanocubes synthesized with solvo-thermal route. Upon excitation with a 980 nm laser diode, the nanocube solution exhibited strong near-infrared emission by the I-4(13/2) -> I-4(15/2) transition of Er3+ ions due to energy transfer from Yb3+ ions. We obtained the highest optical gain coefficient at 1550 nm of 0.58 cm(-1) for the solution with the pumping power of 200 mW. This colloidal solution might be a promising candidate as a liquid medium for optical amplifier and laser at the optical communication wavelength. (C) 2009 Optical Society of America
Resumo:
The unique structure and properties of brush polymers have led to increased interest in them within the scientific community. This thesis describes studies on the self-assembly of these brush polymers.
Chapter 2 describes a study on the rapid self-assembly of brush block copolymers into nanostructures with photonic bandgaps spanning the entire visible spectrum, from ultraviolet to near infrared. Linear relationships are observed between the peak wavelengths of reflection and polymer molecular weights. This work enables "bottom-up" fabrication of photonic crystals with application-tailored bandgaps, through synthetic control of the polymer molecular weight and the method of self-assembly.
Chapter 3 details the analysis of the self-assembly of symmetrical brush block copolymers in bulk and thin films. Highly ordered lamellae with domain spacing ranging from 20 to 240 nm are obtained by varying molecular weight of the backbone. The relationship between degree of polymerization and the domain spacing is reported, and evidence is provided for how rapidly the brush block copolymers self-assemble and achieve thermodynamic equilibrium.
Chapter 4 describes investigations into where morphology transitions take place as the volume fraction of each block is varied in asymmetrical brush block copolymers. Imaging techniques are used to observe a transition from lamellar to a cylindrical morphology as the volume fraction of one of the blocks exceeds 70%. It is also shown that the asymmetric brush block copolymers can be kinetically trapped into undulating lamellar structures by drop casting the samples.
Chapter 5 explores the capability of macromolecules to interdigitate into densely grafted molecular brush copolymers using stereocomplex formation as a driving force. The stereocomplex formation between complementary linear polymers and brush copolymers is demonstrated, while the stereocomplex formation between complementary brush copolymers is shown to be restricted.
Resumo:
We investigate the group velocity of the probe light pulse in an open V-type system with spontaneously generated coherence. We find that, not only varying the relative phase between the probe and driving pulses can but varying the atomic exit rate or incoherent pumping rate also can manipulate dramatically the group velocity, even make the pulse propagation switching from subluminal to superluminal; the subliminal propagation can be companied with gain or absorption, but the superluminal propagation is always companied with absorption. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Mitochondria contain a 16.6 kb circular genome encoding 13 proteins as well as mitochondrial tRNAs and rRNAs. Copies of the genome are organized into nucleoids containing both DNA and proteins, including the machinery required for mtDNA replication and transcription. Although mtDNA integrity is essential for cellular and organismal viability, regulation of proliferation of the mitochondrial genome is poorly understood. To elucidate the mechanisms behind this, we chose to study the interplay between mtDNA copy number and the proteins involved in mitochondrial fusion, another required function in cells. Strikingly, we found that mouse embryonic fibroblasts lacking fusion also had a mtDNA copy number deficit. To understand this phenomenon further, we analyzed the binding of mitochondrial transcription factor A, whose role in transcription, replication, and packaging of the genome is well-established and crucial for cellular maintenance. Using ChIP-seq, we were able to detect largely uniform, non-specific binding across the genome, with no occupancy in the known specific binding sites in the regulatory region. We did detect a single binding site directly upstream of a known origin of replication, suggesting that TFAM may play a direct role in replication. Finally, although TFAM has been previously shown to localize to the nuclear genome, we found no evidence for such binding sites in our system.
To further understand the regulation of mtDNA by other proteins, we analyzed publicly available ChIP-seq datasets from ENCODE, modENCODE, and mouseENCODE for evidence of nuclear transcription factor binding to the mitochondrial genome. We identified eight human transcription factors and three mouse transcription factors that demonstrated binding events with the classical strand asymmetrical morphology of classical binding sites. ChIP-seq is a powerful tool for understanding the interactions between proteins and the mitochondrial genome, and future studies promise to further the understanding of how mtDNA is regulated within the nucleoid.