958 resultados para aquaculture production
Resumo:
We have developed a two-stage growth one-step process for cultivation of Haematococcus using a self-designed system that mimics an open pond in the natural environment. The characteristics of this process are green vegetative cell growth and cysts transformation and pigment accumulation that proceed spontaneously and successively in one open photobioreactor. Four strains of Haematococcus (H. pluvialis 26; H. pluvialis 30; H. pluvialis 34; H. pluvialis WZ) were cultured in this imitation system for a duration of 12 days. The changes in cell density and medium pH were closely monitored, and the astaxanthin content and yield of the four Haematococcus strains were measured at the end of 12 days of cultivation. Two of the strains, H. pluvialis 26 and H. pluvialis WZ, were selected as strains suitable for mass culture, resulting in the astaxanthin yield of 51.06 and 40.25 mg L-1 which are equivalent to 2.79 and 2.50% of their dry biomass respectively. Based on the laboratory work, 6 batch cultures of H. pluvialis WZ were conducted successfully to produce astaxanthin in two 100 m(2) open race-way pond by two-stage growth one-step process. The astaxanthin content ranged from 1.61 to 2.48 g 100 g(-1) dry wt., with average astaxanthin content of 2.10 g 100 g(-1) dry wt. Compared with the one-stage production of astaxanthin based on continuous culture, the superiority of our process is that it can accumulate much more astaxanthin in red cysts. Compared with two-stage production of astaxanthin, the advantage of our process is that it does not need to divide the production process into two parts using two bioreactors. The presented work demonstrates the feasibility for producing astaxanthin from Haematococcus using a two-stage growth one-step process in open pond, culture systems that have been successfully used for Spirulina and Chlorella mass culture. The future of Haematococcus astaxanthin production has been also discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The reuse of holdfasts for regeneration of young seedlings or using wild juvenile plants as the seedling source has played the major role in commercial cultivation of the brown alga Hizikia fusiformis in East Asia over the past 20 years. The possibility of employing zygote-derived germlings for producing seedlings has been discussed in the literature, but has not yet become a reality. Three main obstacles have limited the use of zygotes as a main source of seedlings, (1) the dioecious nature of the algal life cycle which may lead to asynchronous male and female receptacle development and thus different timing of egg and spermatozoa expulsion, (2) the low attachment rate when using zygote-derived germlings with developed rhizoids from wild parental plants for seeding production, and (3) the problem of culturing young germlings in regions where water temperature is high in summer. In this investigation, shifting the timing of receptacle formation earlier than in nature was performed by tumbling the algae in a long-day tank (16-h light per day). Synchronization of egg and spermatozoa expulsion and thereafter fertilization were conducted in indoor tanks. Receptacle formation in constant long days could be shifted by 20 days earlier than in plants cultured on long lines in the open sea, or I month earlier than in plants growing on intertidal rocks. Synchronized expulsion of eggs and spermatozoon led to a high rate of fertilization. This was achieved by tumbling the male and female receptacle-bearing branchlets in the same tank at low density in high irradiance. In two independent trials, a total of 1,400,000 zygote-derived germlings were obtained from 620 g (fresh weight) female sporophytes. The germlings shed from the receptacles were at an identical developmental stage indicating high synchronization of expulsion of eggs and spermatozoon followed by fertilization. Approximately 63% ( +/-9.6%) of the germlings were shed from the receptacle between 16 and 24 It after fertilization and 20% ( +/-11.9%) remained on the receptacle for 3 days after fertilization. Germlings were seeded on string collectors before rhizoids started to elongate and the attachment efficiency was enhanced. Young seedlings reached 800 ( +/-50) mum in length in 25 days at 25 degreesC before they were transferred to open sea cultivation. These results provide the basis of a practical way of seedling production by use of zygote-derived germlings in the commercial cultivation of Hizikia fusiformis. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
A base population of the bay scallop, Argopecten irradians irradians Lamarck, was produced by crossing two cultured bay scallop populations. After 1 year of rearing, the top 10% truncation selection of the top 10% (i=1.755) was carried out in the base population of about 1300 adults. A control parental group with a an identical number to the select parental group was randomly selected from the entire population before isolation of the select parental group. The result showed that, at the larval stage, the growth rate of larvae in the selected line was significantly higher than that of the control (P < 0.05), and that the genetic gain was 6.78%. Owing to the lower density of control at the spat stage, the mean shell length of the control line was larger than that of the select line at day 100. When the same density was adjusted between two lines in the grow-out stage (from day 100 to 160), the daily growth rate of the selected line was significantly higher than that of the control line (P < 0.05). Survival of the select line was significantly larger than that of the control line in the grow-out stage. In conclusion, the results obtained from this experiment indicate that selective breeding from a base population with a high genetic diversity established by mass spawning between different populations appears to be a promising method of genetic improvement in bay scallop, A. irradians irradians Lamarck.
Resumo:
Growing human populations and changing dietary preferences are increasing global demands for fish, adding pressure to concerns over fisheries sustainability. Here we develop and link models of physical, biological and human responses to climate change in 67 marine national exclusive economic zones, which yield approximately 60% of global fish catches, to project climate change yield impacts in countries with different dependencies on marine fisheries. Predicted changes in fish production indicate increased productivity at high latitudes and decreased productivity at low/mid latitudes, with considerable regional variations. With few exceptions, increases and decreases in fish production potential by 2050 are estimated to be <10% (mean C3.4%) from present yields. Among the nations showing a high dependency on fisheries, climate change is predicted to increase productive potential in West Africa and decrease it in South and Southeast Asia. Despite projected human population increases and assuming that per capita fish consumption rates will be maintained1, ongoing technological development in the aquaculture industry suggests that projected global fish demands in 2050 could be met, thus challenging existing predictions of inevitable shortfalls in fish supply by the mid-twenty-first century. This conclusion, however, is contingent on successful implementation of strategies for sustainable harvesting and effective distribution of wild fish products from nations and regions with a surplus to those with a deficit. Changes in management effectiveness2 and trade practices5 will remain the main influence on realized gains or losses in global fish production.
Resumo:
Aquaculture is currently the fastest expanding global animal food production sector and is a key future contributor to food security. An increase in food security will be dependent upon the development and improvement of sustainable practices. A prioritization exercise was undertaken, focusing on the future knowledge needs to underpin UK sustainable aquaculture (both domestic and imported products) using a ‘task force’ group of 36 ‘practitioners’ and 12 ‘research scientists’ who have an active interest in sustainable aquaculture. A long list of 264 knowledge needs related to sustainable aquaculture was developed in conjunction with the task force. The long list was further refined through a three stage process of voting and scoring, including discussions of each knowledge need. The top 25 knowledge needs are presented, as scored separately by ‘practitioners’ or ‘research scientists’. There was similar agreement in priorities identified by these two groups. The priority knowledge needs will provide guidance to structure ongoing work to make science accessible to practitioners and help to prioritize future science policy needs and funding. The process of knowledge exchange, and the mechanisms by which this can be achieved, effectively emerged as the top priority for sustainable aquaculture. Viable alternatives to wild fish-based aquaculture feeds, resource constraints that will potentially limit expansion of aquaculture, sustainable offshore aquaculture and the treatment of sea lice also emerged as strong priorities. Although the exercise was focused on UK needs for sustainable aquaculture, many of the emergent issues are considered to have global application.
Resumo:
Newly hatched juvenile Buccinum undatum can be reared under laboratory conditions. Good was growth is achieved when juveniles were fed on combined diets (blue mussel, cod, and fish pellets). Juveniles reached shell heights of 33.0 ± 4.2 mm, 26.9 ± 3.8 ± mm, 23.2 ± 2.2 mm, and 20.1 ± 1.6 mm, after 14 months of fedding on a combined diet, blue mussel, cod, and fish pellets, respectively under ambient sea temperature and salinity. After 14 months juveniles fed blue mussel had the highest survival rates (67%) followed by those fed a combination of all other experimental diets (61%), cod waste (53%) and fish-feed pellets (46%). High mortalities were recorded in most treatments during the summer months between June and September. This species appears to have an aquaculture potential, as juveniles readily feed on artificial diets at an early age, show high survival rates and could potentially reach market size in 2 years or less. The major constraint in realising this potential at present, is the relatively low value of the species; if market values increased as a result of serious depletion of natural populations, hatchery production of juveniles for intensive aquaculture or restocking could become economically viable.
Resumo:
The increasing interest in coral culture for biotechnological applications, to supply the marine aquarium trade, or for reef restoration programs, has prompted researchers to optimize coral culture protocols, with emphasis to ex situ production. When cultured ex situ, the growth performance of corals can be influenced by several physical, chemical and biological parameters. For corals harbouring zooxanthellae, light is one of such key factors, as it can influence the photosynthetic performance of these endosymbionts, as well as coral physiology, survival and growth. The economic feasibility of ex situ coral aquaculture is strongly dependent on production costs, namely those associated with the energetic needs directly resulting from the use of artificial lighting systems. In the present study we developed a versatile modular culture system for experimental coral production ex situ, assembled solely using materials and equipment readily available from suppliers all over the world; this approach allows researchers from different institutions to perform truly replicated experimental set-ups, with the possibility to directly compare experimental results. Afterwards, we aimed to evaluate the effect of contrasting Photosynthetically Active Radiation (PAR) levels, and light spectra emission on zooxanthellae photochemical performance, through the evaluation of the maximum quantum yield of PSII (Fv/Fm) (monitored non-invasively and non-destructively through Pulse Amplitude Modulation fluorometry, PAM), chlorophyll a content (also determined non-destructively by using the spectral reflectance index Normalized Difference Vegetation Index, NDVI), photosynthetic and accessory pigments, number of zooxanthellae, coral survival and growth. We studied two soft coral species, Sarcophyton cf. glaucum and Sinularia flexibilis, as they are good representatives of two of the most specious genera in family Alcyoniidae, which include several species with interest for biotechnological applications, as well as for the marine aquarium trade; we also studied two commercially important scleractinian corals: Acropora formosa and Stylophora pistillata. We used different light sources: hydrargyrum quartz iodide (HQI) lamps with different light color temperatures, T5 fluorescent lamps, Light Emitting Plasma (LEP) and Light Emitting Diode (LED). The results achieved revealed that keeping S. flexibilis fragments under the same light conditions as their mother colonies seems to be photobiologically acceptable for a short-term husbandry, notwithstanding the fact that they can be successfully stocked at lower PAR intensities. We also proved that low PAR intensities are suitable to support the ex situ culture S. cf. glaucum in captivity at lower production costs, since the survival recorded during the experiment was 100%, the physiological wellness of coral fragments was evidenced, and we did not detect significant differences in coral growth. Finally, we concluded that blue light sources, such as LED lighting, allow a higher growth for A. formosa and S. pistillata, and promote significant differences on microstructure organization and macrostructure morphometry in coral skeletons; these findings may have potential applications as bone graft substitutes for veterinary and/or other medical uses. Thus, LED technology seems to be a promising option for scleractinian corals aquaculture ex situ.
Resumo:
Tese dout., Química, Universidade do Algarve, 2005
Resumo:
Tese de Doutoramento, Aquacultura, Especialidade de Sistema de Produção, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007
Resumo:
Microplankton community, production, and respiration were studied alongside physical and chemical conditions at Sagres (SW Portugal) during the upwelling season, from May to September 2001. The sampling station was 5 km east of the upwelling center off Cabo S. Vicente, and 2 km of an offshore installation for bivalve aquaculture.
Resumo:
Infectious diseases often hamper the production of aquatic organisms in aquaculture systems, causing economical losses, environmental problems and consumer safety issues. The conventional way aquaculture producers had to control pathogens was by means of synthetic antibiotics and chemicals. This procedure had consequences in the emergence of more resilient pathogens, drug contamination of seafood products and local ecosystems. To avoid the repercussions of antibiotic use, vaccination has greatly replaced human drugs in western fish farms. However there is still massive unregulated antibiotic use in third world fish farms, so less expensive therapeutic alternatives for drugs are desperately needed. An alternative way to achieve disease control in aquaculture is by using natural bioactive organic compounds with antibiotic, antioxidant and/or immunostimulant properties. Such diverse biomolecules occur in bacteria, algae, fungi, higher plants and other organisms. Fatty acids, nucleotides, monosaccharides, polysaccharides, peptides, polyphenols and terpenoids, are examples of these substances. One promising source of bioactive compounds are salt tolerant plants. Halophytes have more molecular resources and defence mechanisms, when compared with other tracheophytes, to deal with the oxidative stresses of their habitat. Many halophytes have been used as a traditional food and medical supply, especially by African and Asian cultures. This scientific work evaluated the antibiotic, antioxidant, immunostimulant and metal chelating properties of Atriplex halimus L., Arthrocnemum macrostachyum Moric., Carpobrotus edulis L., Juncus acutus L. and Plantago coronopus L., from the Algarve coast. The antibiotic properties were tested against Listonella anguillarum, Photobacterium damselae piscicida and Vibrio fischeri. The immunostimulant properties were tested with cytochrome c and Griess assays on Sparus aurata head-kidney phagocytes. J. acutus ether extract inhibited the growth of P. damselae piscicida. A. macrostachyum, A. halimus, C. edulis, Juncus acutus and P. coronopus displayed antioxidant, copper chelating and iron chelating properties. These plants show potential as sources of bioactive compounds with application in aquaculture and in other fields.
Resumo:
Microalgae are promising microorganisms for the production of food and fine chemicals. Several species of microalgae are used in aquaculture with the purpose of transfer bioactive compounds up to the aquatic food chain. The main objective of this project was to develop a stress–inducement strategy in order to enhance the biochemical productivity of Nannochloropsis gaditana, Rhodomonas marina and Isochrysis sp. for aquaculture purposes having in account their growth and organizational differences. In this regard, two experiments were design: the first one consisted on the alteration of overall nutrient availabilities in growth medium; and the second one comprised changes in nitrogen and sulfur concentrations maintaining the concentrations of the other nutrients present in a commercial growth medium (Nutribloom plus), which is frequently used in aquaculture. Microalgae dried biomass was characterized biochemically and elemental analysis was also performed for all samples. In first experimental design: linear trends between nutrient availability in growth media and microalgae protein content were obtained; optimum productivities of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) were attained for both R. marina and N. gaditana in growth media enriched with 1000 L L-1 of nutrient solution whereas for Isochrysis sp. the double of Nutribloom plus was needed; the decrease of glucans and total monosaccharides with nutrient availability for R. marina and Isochrysis sp. showed the occurrence of a possible depletion of carbohydrates towards lipids and proteins biosynthesis. Second experimental desing: N. gaditana exhibited the highest variation in their biochemical composition against the applied perturbation; variations observed for microalgae in their biochemical composition were reflected in their elemental stoichiometry; in N. gaditana the highest nitrogen concentrations lead to overall maximum productivities of the biochemical parameters. The results of the present work show two stress-inducement strategies for microalgae that may constitute a base for further investigations on their biochemical enhancement.
Resumo:
Controlling the inorganic nitrogen by manipulating carbon / nitrogen ratio is a method gaining importance in aquaculture systems. Nitrogen control is induced by feeding bacteria with carbohydrates and through the subsequent uptake of nitrogen from the water for the synthesis of microbial proteins. The relationship between addition of carbohydrates, reduction of ammonium and the production of microbial protein depends on the microbial conversion coefficient. The carbon / nitrogen ratio in the microbial biomass is related to the carbon contents of the added material. The addition of carbonaceous substrate was found to reduce inorganic nitrogen in shrimp culture ponds and the resultant microbial proteins are taken up by shrimps. Thus, part of the feed protein is replaced and feeding costs are reduced in culture systems.The use of various locally available substrates for periphyton based aquaculture practices increases production and profitability .However, these techniques for extensive shrimp farming have not so far been evaluated. Moreover, an evaluation of artificial substrates together with carbohydrate source based farming system in reducing inorganic nitrogen production in culture systems has not yet been carried-out. Furthermore, variations in water and soil quality, periphyton production and shrimp production of the whole system have also not been determined so-far.This thesis starts with a general introduction , a brief review of the most relevant literature, results of various experiments and concludes with a summary (Chapter — 9). The chapters are organised conforming to the objectives of the present study. The major objectives of this thesis are, to improve the sustainability of shrimp farming by carbohydrate addition and periphyton substrate based shrimp production and to improve the nutrient utilisation in aquaculture systems.
Resumo:
The thesis entitled "Studies on improved practices of prawn farming for higher production in central Kerala" prepared by the author describes various practices prevailing in the study area in order to elucidate their relative merits. The study on semi-intensive farming at Mundapuram, Kannur was also carried out and included in the thesis for comparison.The author felt it important to make a critical study of the existing culture practices in the central Kerala, a region where it has been existing since time immemorial.Careful analysis of data accrued by the author has helped him to identify strength, weakness, opportunities and threats confronting the shrimp farming. As a result it was possible to evolve an appropriate management technology taking into consideration the various ecological (location specific), social and economical conditions prevalent in the vast study area.
Resumo:
Pyocyanin is a versatile and multifunctional phenazine, widely used as a bio-control agent. Besides its toxicity in higher concentration, it has been applied as bio-control agents against many pathogens including the Vibrio spp. in aquaculture systems. The exact mechanism of the production of pyocyanin in Pseudomonas aeruginosa is well known, but the genetic modification of pyocyanin biosynthetic pathways in P. aeruginosa is not yet experimented to improve the yield of pyocyanin production. In this context, one of the aims of this work was to improve the yield of pyocyanin production in P. aeruginosa by way of increasing the copy number of pyocyanin pathway genes and their over expression. The specific aims of this work encompasses firstly, the identification of probiotic effect of P. aeruginosa isolated from various ecological niches, the overexpression of pyocyanin biosynthetic genes, development of an appropriate downstream process for large scale production of pyocyanin and its application in aquaculture industries. In addition, this work intends to examine the toxicity of pyocyanin on various developmental stages of tiger shrimp (Penaeus monodon), Artemia nauplii, microbial consortia of nitrifying bioreactors (Packed Bed Bioreactor, PBBR and Stringed Bed Suspended Bioreactor, SBSBR) and in vitro cell culture systems from invertebrates and vertebrates. The present study was undertaken with a vision to manage the pathogenic vibrios in aquaculture through eco-friendly and sustainable management strategies with the following objectives: Identification of Pseudomonas isolated from various ecological niches and its antagonism to pathogenic vibrios in aquaculture.,Saline dependent production of pyocyanin in Pseudomonas aeruginosa originated from different ecological niches and their selective application in aquaculture,Cloning and overexpression of Phz genes encoding phenazine biosynthetic pathway for the enhanced production of pyocyanin in Pseudomonas aeruginosa MCCB117,Development of an appropriate downstream process for large scale production of pyocyanin from PA-pUCP-Phz++; Structural elucidation and functional analysis of the purified compoundToxicity of pyocyanin on various biological systems.