970 resultados para alpine meadow


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycoplasma conjunctivae is considered the major cause of infectious keratoconjunctivitis (IKC) in Alpine ibex (Capra i. ibex) and chamois (Rupicapra r. rupicapra). While it is known that domestic sheep can act as healthy carriers for M. conjunctivae, this question has not been addressed in wild ungulates so far. In this study, bacteriological investigations and field observations were performed to assess whether free-ranging Alpine ibex can be healthy carriers of M. conjunctivae. Among 136 ibex without clinical signs of IKC, M. conjunctivae was identified 26 times (19.1%) by TaqMan PCR. To assess the potential pathogenicity of M. conjunctivae strains isolated from asymptomatic eyes, strains from three healthy ibex and from 15 IKC-ibex and IKC-chamois were analysed genetically by DNA sequence analysis of the variable part of the lppS gene. No significant differences were observed between strains from asymptomatic and clinically affected animals, reflecting the assumption that healthy ibex may act as carriers for M. conjunctivae strains that may be pathogenic for other individuals. Our results further indicate that development of IKC is associated with M. conjunctivae load in the eyes. In addition, a questionnaire survey revealed that IKC is generally less common in ibex than chamois and that infection in wild ungulates is not necessarily linked to the presence of sheep. These data support the hypothesis that apparently healthy ibex may be important in the epizootiology of IKC and indicate that host predilection may play a role in IKC development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five cases of fatal babesiosis in free-ranging chamois (Rupicapra r. rupicapra) attributed to infections with Babesia capreoli were recently recorded in two regions of the Swiss Alps. To investigate the ecologic factors that possibly lead to those fatal B. capreoli infections in chamois, blood, ticks, and demographic data of 46 roe deer (Capreolus c. capreolus), 48 chamois, and nine red deer (Cervus elaphus) were collected in 2006 and 2007 in both affected regions. Whereas no parasitic inclusions were found by microscopical examination of blood smears, B. capreoli was identified by polymerase chain reaction/sequencing in blood of 12 roe deer (26%, 95% confidence interval [CI]: 14.3-41.1), one chamois (2%, CI: 0-6.1), and one red deer (11%, CI: 0.3-48.2). Prevalence of B. capreoli was significantly higher in roe deer compared with chamois (P<0.001). All 214 ticks were identified as Ixodes ricinus, and significantly more roe deer (63%, CI: 47.5-76.8) were infested compared with chamois (21%, CI: 10.5-35.0, P<0.001). Overall, prevalences of both tick infestation and Babesia infection increased significantly (P<0.001) with decreasing altitude, and Babesia-positive samples were detected significantly more often from animals with tick infestation compared with animals without ticks (P = 0.040). Our results indicate that roe deer may play an important reservoir role for B. capreoli. It is hypothesized that the expansion of the presumed vector I. ricinus to higher elevations and its increased abundance in overlapping habitats of roe deer and chamois may favor the spillover of B. capreoli from roe deer to chamois.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulation and delta O-18 data from Alpine ice cores provide information on past temperature and precipitation. However, their correlation with seasonal or annual mean temperature and precipitation at nearby sites is often low. This is partly due to the irregular sampling of the atmosphere by the ice core (i.e. ice cores almost only record precipitation events and not dry periods) and the possible incongruity between annual layers and calendar years. Using daily meteorological data from a nearby station and reanalyses, we replicate the ice core from the Grenzgletscher (Switzerland, 4200m a.s.l.) on a sample-by-sample basis by calculating precipitation-weighted temperature (PWT) over short intervals. Over the last 15 yr of the ice core record, accumulation and delta O-18 variations can be well reproduced on a sub-seasonal scale. This allows a wiggle-matching approach for defining quasi-annual layers, resulting in high correlations between measured quasi-annual delta O-18 and PWT. Further back in time, the agreement deteriorates. Nevertheless, we find significant correlations over the entire length of the record (1938-1993) of ice core delta O-18 with PWT, but not with annual mean temperature. This is due to the low correlations between PWT and annual mean temperature, a characteristic which in ERA-Interim reanalysis is also found for many other continental mid-to-high-latitude regions. The fact that meteorologically very different years can lead to similar combinations of PWT and accumulation poses limitations to the use of delta O-18 from Alpine ice cores for temperature reconstructions. Rather than for reconstructing annual mean temperature, delta O-18 from Alpine ice cores should be used to reconstruct PWT over quasi-annual periods. This variable is reproducible in reanalysis or climate model data and could thus be assimilated into conventional climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatively little is known about past cold-season temperature variability in high-Alpine regions because of a lack of natural cold-season temperature proxies as well as under-representation of high-altitude sites in meteorological, early-instrumental and documentary data sources. Recent studies have shown that chrysophyte stomatocysts, or simply cysts (sub-fossil algal remains of Chrysophyceae and Synurophyceae), are among the very few natural proxies that can be used to reconstruct cold-season temperatures. This study presents a quantitative, high-resolution (5-year), cold-season (Oct–May) temperature reconstruction based on sub-fossil chrysophyte stomatocysts in the annually laminated (varved) sediments of high-Alpine Lake Silvaplana, SE Switzerland (1,789 m a.s.l.), since AD 1500. We first explore the method used to translate an ecologically meaningful variable based on a biological proxy into a simple climate variable. A transfer function was applied to reconstruct the ‘date of spring mixing’ from cyst assemblages. Next, statistical regression models were tested to convert the reconstructed ‘dates of spring mixing’ into cold-season surface air temperatures with associated errors. The strengths and weaknesses of this approach are thoroughly tested. One much-debated, basic assumption for reconstructions (‘stationarity’), which states that only the environmental variable of interest has influenced cyst assemblages and the influence of confounding variables is negligible over time, is addressed in detail. Our inferences show that past cold-season air-temperature fluctuations were substantial and larger than those of other temperature reconstructions for Europe and the Alpine region. Interestingly, in this study, recent cold-season temperatures only just exceed those of previous, multi-decadal warm phases since AD 1500. These findings highlight the importance of local studies to assess natural climate variability at high altitudes.