666 resultados para aerodynamic baffle
Resumo:
A large-eddy simulation with transitional structure function(TSF) subgrid model we previously proposed was performed to investigate the turbulent flow with thermal influence over an inhomogeneous canopy, which was represented as alternative large and small roughness elements. The aerodynamic and thermodynamic effects of the presence of a layer of large roughness elements were modelled by adding a drag term to the three-dimensional Navier-Stokes equations and a heat source/sink term to the scalar equation, respectively. The layer of small roughness elements was simply treated using the method as described in paper (Moeng 1984, J. Atmos Sci. 41, 2052-2062) for homogeneous rough surface. The horizontally averaged statistics such as mean vertical profiles of wind velocity, air temperature, et al., are in reasonable agreement with Gao et al.(1989, Boundary layer meteorol. 47, 349-377) field observation (homogeneous canopy). Not surprisingly, the calculated instantaneous velocity and temperature fields show that the roughness elements considerably changed the turbulent structure within the canopy. The adjustment of the mean vertical profiles of velocity and temperature was studied, which was found qualitatively comparable with Belcher et al. (2003, J Fluid Mech. 488, 369-398)'s theoretical results. The urban heat island(UHI) was investigated imposing heat source in the region of large roughness elements. An elevated inversion layer, a phenomenon often observed in the urban area (Sang et al., J Wind Eng. Ind. Aesodyn. 87, 243-258)'s was successfully simulated above the canopy. The cool island(CI) was also investigated imposing heat sink to simply model the evaporation of plant canopy. An inversion layer was found very stable and robust within the canopy.
Resumo:
When a shock wave interacts with a group of solid spheres, non-linear aerodynamic behaviors come into effect. The complicated wave reflections such as the Mach reflection occur in. the wave propagation process. The wave interactions with vortices behind each sphere's wake cause fluctuation in the pressure profiles of shock waves. This paper reports an experimental study for the aerodynamic processes involved in the interaction between shock waves and solid spheres. A schlieren photography was applied to visualize the various shock waves passing through solid spheres. Pressure measurements were performed along different downstream positions. The experiments were conducted in both rectangular and circular shock tubes. The data with respect to the effect of the sphere array, size, interval distance, incident Mach number, etc., on the shock wave attenuation were obtained.
Resumo:
A method based on the computational fluid dynamics (CFD) is presented for a flexible waverider's design. The generating bodies of this method could be any cones. In addition, either the leading edge or the profile of the scramjet's inlet is used as the waverider's definition curve, parameterized by the quadric function, the sigmoid function or the B-spline function. Furthermore, several numerical examples are carried out to validate the method and the relevant codes. The CFD results of the configurations show that all the designs are successful. Moreover, primary suggestions are proposed for practical design by comparing the geometrical and aerodynamic performances of the cone-derived waveriders at Mach 6.
Resumo:
该研究简报介绍了用膨胀波管产生高超声速气流的实验结果。用压力传感器测量了激波管内的激波速度,用激光全息摄影拍摄了飞船返回舱模型吹风时的激波形状,证实了在膨胀波管中建立了可用的流动条件。
Resumo:
乘波飞行器运动过程中的非定常气动特性是高超声速飞行中的重要物理问题之一。采用数值模拟方法模拟了乘波飞行器在固定迎角下绕其对称轴强迫滚转运动这一过程。比较了在不同频率和滚转角下乘波飞行器的气动特性。计算格式采用AUSM类格式中最新的AUSM~+-up格式。计算结果表明:AUSM~+-up能很好地模拟飞行器滚转运动这一非定常过程;滚转运动时,所设计的乘波飞行器能使高压气体很好地附着在乘波飞行器下表面从而使其具有较好的气动特性;当频率较大时,乘波飞行器由于角速度的诱导作用会导致升力出现迟滞现象;做滚转运动时,滚转力矩小于零,产生正阻尼,乘波飞行器不会产生"摇滚"运动.
Resumo:
基于刚性动网格的技术,选用B-L湍流模型,利用有限控制体积法对N-S方程进行数值离散,对76°大后掠三角翼的受迫俯仰滚转耦合运动进行了数值模拟,在此基础上,对俯仰滚转耦合运动的气动力特性和流场结构进行了分析.计算结果表明:俯仰滚转耦合运动时,三角翼上表面的涡分布的非对称性将产生横侧方向的偏航力矩和滚转力矩,滚转力矩和偏航力矩随着滚转振幅角和滚转缩减频率的增大而增大,但对法向力影响不大.
Resumo:
介绍了有关脉冲超声速水射流以及柴油射流气动特性的研究结果。水射流实验是在一台垂直设置的内径为8mm的火药枪设备上进行的。用出口直径为5mm的喷嘴,产生了速度为600m/s的水射流。用纹影仪观察了射流及激波形状,从而测量了激波与前体驻点之间的离开距离。柴油射流实验是在一台水平设置的高压氦气气枪设备上进行的。
Resumo:
以绕楔高超声速流场为基础,用流线追踪法生成了一种高超声速飞行器气动概念构形、初步探索了高超声速飞行器机身/推进系统一体化气动构形设计方法,开展了高超声速测压实验,结果表明:该类构形飞行器在高超声速飞行时,可以产生较高的升阻比,前体的预压缩效果明显,是以吸气式冲压发动机动力的有效途的飞行器构形。
Resumo:
Through the coupling between aerodynamic and structural governing equations, a fully implicit multiblock aeroelastic solver was developed for transonic fluid/stricture interaction. The Navier-Stokes fluid equations are solved based on LU-SGS (lower-upper symmetric Gauss-Seidel) Time-marching subiteration scheme and HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) spacing discretization scheme and the same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Transfinite interpolation (TFI) is used for the grid deformation of blocks neighboring the flexible surfaces. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between fluid and structure. The developed code was fort validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. In the subsonic and transonic range, the calculated flutter speeds and frequencies agree well with experimental data, however, in the supersonic range, the present calculation overpredicts the experimental flutter points similar to other computations. Then the flutter character of a complete aircraft configuration is analyzed through the calculation of the change of structural stiffness. Finally, the phenomenon of aileron buzz is simulated for the weakened model of a supersonic transport wing/body model at Mach numbers of 0.98 and l.05. The calculated unsteady flow shows, on the upper surface, the shock wave becomes stronger as the aileron deflects downward, and the flow behaves just contrary on the lower surface of the wing. Corresponding to general theoretical analysis, the flow instability referred to as aileron buzz is induced by a stronger shock alternately moving on the upper and lower surfaces of wing. For the rigid structural model, the flow is stable at all calculated Mach numbers as observed in experiment
Resumo:
Numerical simulation was conducted to characterize the kerosene spray injecting into supersonic cross flow, especially focusing on the aerodynamic secondary breakup effect of the supersonic cross flow on the initial droplets. It was revealed that the initial parent drops were broken up into small drops whose diameter is about O(10) micrometers soon after they entered into the supersonic cross flow. During the appropriate range of initial drop size, the parent droplets would be broken up into small drops with the same magnitude diameter no matter how large the initial drops SMD was.
Resumo:
Numerical simulation was conducted to study the kerosene spray characteristics injecting into supersonic cross flow. The verification of the simulation was carried out by experimental Schlieren image, and the agreement was obtained by compared the spray plume pictures. Furthermore, the aerodynamic secondary breakup effect of the supersonic cross flow on the initial droplets was investigated. It was revealed that the initial parent drops were broken up into small drops whose diameter is about O(10) micrometers soon after they entered into the supersonic cross flow. During the appropriate range of initial drop size, the parent droplets would be broken up into small drops with the same magnitude diameter no matter how large the initial drops SMD was.
Resumo:
Ammonothermal growth of GaN crystals with a retrograde solubility has been modeled and simulated here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the flow in the porous charge is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. For the case of retrograde solubility, the charge is put above the baffle. The temperature difference between the dissolving zone and growth zone is found smaller than that applied on the sidewall of autoclave. The baffle opening has a strong effect on the nutrient transport and supersaturation of GaN species in the growth zone.
Resumo:
GaN can be used to fabricate blue/green/UV LEDs and high temperature, high power electronic devices. Ideal substrates are needed for high quality III-nitride epitaxy, which is an essential step for the manufacture of LEDs. GaN substrates are ideal to be lattice matched and isomorphic to nitride-based films. Bulk single crystals of GaN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or azide is used to attack a bulk nitride feedstock at temperatures from 200 - 500癈 and pressures from 1 - 4 kbar. Baffle design is essential for successful growth of GaN crystals. Baffle is used to separate the dissolving zone from the growth zone, and to maintain a temperature difference between the two zones. For solubility curve with a positive coefficient with respect to temperature, the growth zone is maintained at a lower temperature than that in the dissolving zone, thus the nutrient becomes supersaturated in the growth zone. The baffle opening is used to control the mixing of nutrients in the two zones, thus the transfer of nutrient from the lower part to the upper part. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. We investigated the effects of baffle opening and position on the transport phenomena of nutrient from dissolving zone to the growth zone. Simulation data have been compared qualitatively with experimental data.
Resumo:
The research progress on high-enthalpy and hypersorlic flows having been achieved in the Institute of Mechanics, Chinese Academy of Sciences, is reported in this paper. The paper consists of three main parts: The first part is on the techniques to develop advanced hypersonic test facilities, in which the detonation-driven shock-reflected tunnel and the detonation-driven shock-expanded tube are introduced. The shock tunnel can be used for generating hypersonic flows of a Mach number ranging from 10 to 20, and the expansion tube is applicable to simulate the flows with a speed of 7 similar to 10km/s. The second part is dedicated to the shock tunnel nozzle flow diagnosis to examine properties of the hypersonic flows thus created. The third part is on experiments and numerical simulations. The experiments include measuring the aerodynamic pitching moment and heat transfer in hypersonic flows, and the numerical work reports nozzle flow simulations and flow non-equilibrium effects on the possible experiments that may be carried out on the above-mentioned hypersonic test facilities.