988 resultados para activation temperature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling how a word is activated in human memory is an important requirement for determining the probability of recall of a word in an extra-list cueing experiment. The spreading activation, spooky-action-at-a-distance and entanglement models have all been used to model the activation of a word. Recently a hypothesis was put forward that the mean activation levels of the respective models are as follows: Spreading � Entanglment � Spooking-action-at-a-distance This article investigates this hypothesis by means of a substantial empirical analysis of each model using the University of South Florida word association, rhyme and word norms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uncertainty associated with how projected climate change will affect global C cycling could have a large impact on predictions of soil C stocks. The purpose of our study was to determine how various soil decomposition and chemistry characteristics relate to soil organic matter (SOM) temperature sensitivity. We accomplished this objective using long-term soil incubations at three temperatures (15, 25, and 35°C) and pyrolysis molecular beam mass spectrometry (py-MBMS) on 12 soils from 6 sites along a mean annual temperature (MAT) gradient (2–25.6°C). The Q10 values calculated from the CO2 respired during a long-term incubation using the Q10-q method showed decomposition of the more resistant fraction to be more temperature sensitive with a Q10-q of 1.95 ± 0.08 for the labile fraction and a Q10-q of 3.33 ± 0.04 for the more resistant fraction. We compared the fit of soil respiration data using a two-pool model (active and slow) with first-order kinetics with a three-pool model and found that the two and three-pool models statistically fit the data equally well. The three-pool model changed the size and rate constant for the more resistant pool. The size of the active pool in these soils, calculated using the two-pool model, increased with incubation temperature and ranged from 0.1 to 14.0% of initial soil organic C. Sites with an intermediate MAT and lowest C/N ratio had the largest active pool. Pyrolysis molecular beam mass spectrometry showed declines in carbohydrates with conversion from grassland to wheat cultivation and a greater amount of protected carbohydrates in allophanic soils which may have lead to differences found between the total amount of CO2 respired, the size of the active pool, and the Q10-q values of the soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of climate change on the health of vulnerable groups such as the elderly has been of increasing concern. However, to date there has been no meta-analysis of current literature relating to the effects of temperature fluctuations upon mortality amongst the elderly. We synthesised risk estimates of the overall impact of daily mean temperature on elderly mortality across different continents. A comprehensive literature search was conducted using MEDLINE and PubMed to identify papers published up to December 2010. Selection criteria including suitable temperature indicators, endpoints, study-designs and identification of threshold were used. A two-stage Bayesian hierarchical model was performed to summarise the percent increase in mortality with a 1°C temperature increase (or decrease) with 95% confidence intervals in hot (or cold) days, with lagged effects also measured. Fifteen studies met the eligibility criteria and almost 13 million elderly deaths were included in this meta-analysis. In total, there was a 2-5% increase for a 1°C increment during hot temperature intervals, and a 1-2 % increase in all-cause mortality for a 1°C decrease during cold temperature intervals. Lags of up to 9 days in exposure to cold temperature intervals were substantially associated with all-cause mortality, but no substantial lagged effects were observed for hot intervals. Thus, both hot and cold temperatures substantially increased mortality among the elderly, but the magnitude of heat-related effects seemed to be larger than that of cold effects within a global context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The relationship between temperature and mortality has been explored for decades and many temperature indicators have been applied separately. However, few data are available to show how the effects of different temperature indicators on different mortality categories, particularly in a typical subtropical climate. OBJECTIVE: To assess the associations between various temperature indicators and different mortality categories in Brisbane, Australia during 1996-2004. METHODS: We applied two methods to assess the threshold and temperature indicator for each age and death groups: mean temperature and the threshold assessed from all cause mortality was used for all mortality categories; the specific temperature indicator and the threshold for each mortality category were identified separately according to the minimisation of AIC. We conducted polynomial distributed lag non-linear model to identify effect estimates in mortality with one degree of temperature increase (or decrease) above (or below) the threshold on current days and lagged effects using both methods. RESULTS: Akaike's Information Criterion was minimized when mean temperature was used for all non-external deaths and deaths from 75 to 84 years; when minimum temperature was used for deaths from 0 to 64 years, 65-74 years, ≥ 85 years, and from the respiratory diseases; when maximum temperature was used for deaths from cardiovascular diseases. The effect estimates using certain temperature indicators were similar as mean temperature both for current day and lag effects. CONCLUSION: Different age groups and death categories were sensitive to different temperature indicators. However, the effect estimates from certain temperature indicators did not significantly differ from those of mean temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of Seven published/submitted papers and one poster presentation, of which five have been published and the other two are under review. This project is financially supported by the QUTPRA Grant. The twenty-first century started with the resurrection of lignocellulosic biomass as a potential substitute for petrochemicals. Petrochemicals, which enjoyed the sustainable economic growth during the past century, have begun to reach or have reached their peak. The world energy situation is complicated by political uncertainty and by the environmental impact associated with petrochemical import and usage. In particular, greenhouse gasses and toxic emissions produced by petrochemicals have been implicated as a significant cause of climate changes. Lignocellulosic biomass (e.g. sugarcane biomass and bagasse), which potentially enjoys a more abundant, widely distributed, and cost-effective resource base, can play an indispensible role in the paradigm transition from fossil-based to carbohydrate-based economy. Poly(3-hydroxybutyrate), PHB has attracted much commercial interest as a plastic and biodegradable material because some its physical properties are similar to those of polypropylene (PP), even though the two polymers have quite different chemical structures. PHB exhibits a high degree of crystallinity, has a high melting point of approximately 180°C, and most importantly, unlike PP, PHB is rapidly biodegradable. Two major factors which currently inhibit the widespread use of PHB are its high cost and poor mechanical properties. The production costs of PHB are significantly higher than for plastics produced from petrochemical resources (e.g. PP costs $US1 kg-1, whereas PHB costs $US8 kg-1), and its stiff and brittle nature makes processing difficult and impedes its ability to handle high impact. Lignin, together with cellulose and hemicellulose, are the three main components of every lignocellulosic biomass. It is a natural polymer occurring in the plant cell wall. Lignin, after cellulose, is the most abundant polymer in nature. It is extracted mainly as a by-product in the pulp and paper industry. Although, traditionally lignin is burnt in industry for energy, it has a lot of value-add properties. Lignin, which to date has not been exploited, is an amorphous polymer with hydrophobic behaviour. These make it a good candidate for blending with PHB and technically, blending can be a viable solution for price and reduction and enhance production properties. Theoretically, lignin and PHB affect the physiochemical properties of each other when they become miscible in a composite. A comprehensive study on structural, thermal, rheological and environmental properties of lignin/PHB blends together with neat lignin and PHB is the targeted scope of this thesis. An introduction to this research, including a description of the research problem, a literature review and an account of the research progress linking the research papers is presented in Chapter 1. In this research, lignin was obtained from bagasse through extraction with sodium hydroxide. A novel two-step pH precipitation procedure was used to recover soda lignin with the purity of 96.3 wt% from the black liquor (i.e. the spent sodium hydroxide solution). The precipitation process is presented in Chapter 2. A sequential solvent extraction process was used to fractionate the soda lignin into three fractions. These fractions, together with the soda lignin, were characterised to determine elemental composition, purity, carbohydrate content, molecular weight, and functional group content. The thermal properties of the lignins were also determined. The results are presented and discussed in Chapter 2. On the basis of the type and quantity of functional groups, attempts were made to identify potential applications for each of the individual lignins. As an addendum to the general section on the development of composite materials of lignin, which includes Chapters 1 and 2, studies on the kinetics of bagasse thermal degradation are presented in Appendix 1. The work showed that distinct stages of mass losses depend on residual sucrose. As the development of value-added products from lignin will improve the economics of cellulosic ethanol, a review on lignin applications, which included lignin/PHB composites, is presented in Appendix 2. Chapters 3, 4 and 5 are dedicated to investigations of the properties of soda lignin/PHB composites. Chapter 3 reports on the thermal stability and miscibility of the blends. Although the addition of soda lignin shifts the onset of PHB decomposition to lower temperatures, the lignin/PHB blends are thermally more stable over a wider temperature range. The results from the thermal study also indicated that blends containing up to 40 wt% soda lignin were miscible. The Tg data for these blends fitted nicely to the Gordon-Taylor and Kwei models. Fourier transform infrared spectroscopy (FT-IR) evaluation showed that the miscibility of the blends was because of specific hydrogen bonding (and similar interactions) between reactive phenolic hydroxyl groups of lignin and the carbonyl group of PHB. The thermophysical and rheological properties of soda lignin/PHB blends are presented in Chapter 4. In this chapter, the kinetics of thermal degradation of the blends is studied using thermogravimetric analysis (TGA). This preliminary investigation is limited to the processing temperature of blend manufacturing. Of significance in the study, is the drop in the apparent energy of activation, Ea from 112 kJmol-1 for pure PHB to half that value for blends. This means that the addition of lignin to PHB reduces the thermal stability of PHB, and that the comparative reduced weight loss observed in the TGA data is associated with the slower rate of lignin degradation in the composite. The Tg of PHB, as well as its melting temperature, melting enthalpy, crystallinity and melting point decrease with increase in lignin content. Results from the rheological investigation showed that at low lignin content (.30 wt%), lignin acts as a plasticiser for PHB, while at high lignin content it acts as a filler. Chapter 5 is dedicated to the environmental study of soda lignin/PHB blends. The biodegradability of lignin/PHB blends is compared to that of PHB using the standard soil burial test. To obtain acceptable biodegradation data, samples were buried for 12 months under controlled conditions. Gravimetric analysis, TGA, optical microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, and X-ray photoelectron spectroscopy (XPS) were used in the study. The results clearly demonstrated that lignin retards the biodegradation of PHB, and that the miscible blends were more resistant to degradation compared to the immiscible blends. To obtain an understanding between the structure of lignin and the properties of the blends, a methanol-soluble lignin, which contains 3× less phenolic hydroxyl group that its parent soda lignin used in preparing blends for the work reported in Chapters 3 and 4, was blended with PHB and the properties of the blends investigated. The results are reported in Chapter 6. At up to 40 wt% methanolsoluble lignin, the experimental data fitted the Gordon-Taylor and Kwei models, similar to the results obtained soda lignin-based blends. However, the values obtained for the interactive parameters for the methanol-soluble lignin blends were slightly lower than the blends obtained with soda lignin indicating weaker association between methanol-soluble lignin and PHB. FT-IR data confirmed that hydrogen bonding is the main interactive force between the reactive functional groups of lignin and the carbonyl group of PHB. In summary, the structural differences existing between the two lignins did not manifest itself in the properties of their blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lately, there has been increasing interest in the association between temperature and adverse birth outcomes including preterm birth (PTB) and stillbirth. PTB is a major predictor of many diseases later in life, and stillbirth is a devastating event for parents and families. The aim of this study was to assess the seasonal pattern of adverse birth outcomes, and to examine possible associations of maternal exposure to temperature with PTB and stillbirth. We also aimed to identify if there were any periods of the pregnancy where exposure to temperature was particularly harmful. A retrospective cohort study design was used and we retrieved individual birth records from the Queensland Health Perinatal Data Collection Unit for all singleton births (excluding twins and triplets) delivered in Brisbane between 1 July 2005 and 30 June 2009. We obtained weather data (including hourly relative humidity, minimum and maximum temperature) and air-pollution data (including PM10, SO2 and O3) from the Queensland Department of Environment and Resource Management. We used survival analyses with the time-dependent variables of temperature, humidity and air pollution, and the competing risks of stillbirth and live birth. To assess the monthly pattern of the birth outcomes, we fitted month of pregnancy as a time-dependent variable. We examined the seasonal pattern of the birth outcomes and the relationship between exposure to high or low temperatures and birth outcomes over the four lag weeks before birth. We further stratified by categorisation of PTB: extreme PTB (< 28 weeks of gestation), PTB (28–36 weeks of gestation), and term birth (≥ 37 weeks of gestation). Lastly, we examined the effect of temperature variation in each week of the pregnancy on birth outcomes. There was a bimodal seasonal pattern in gestation length. After adjusting for temperature, the seasonal pattern changed from bimodal, to only one peak in winter. The risk of stillbirth was statistically significant lower in March compared with January. After adjusting for temperature, the March trough was still statistically significant and there was a peak in risk (not statistically significant) in winter. There was an acute effect of temperature on gestational age and stillbirth with a shortened gestation for increasing temperature from 15 °C to 25 °C over the last four weeks before birth. For stillbirth, we found an increasing risk with increasing temperatures from 12 °C to approximately 20 °C, and no change in risk at temperatures above 20 °C. Certain periods of the pregnancy were more vulnerable to temperature variation. The risk of PTB (28–36 weeks of gestation) increased as temperatures increased above 21 °C. For stillbirth, the fetus was most vulnerable at less than 28 weeks of gestation, but there were also effects in 28–36 weeks of gestation. For fetuses of more than 37 weeks of gestation, increasing temperatures did not increase the risk of stillbirth. We did not find any adverse affects of cold temperature on birth outcomes in this cohort. My findings contribute to knowledge of the relationship between temperature and birth outcomes. In the context of climate change, this is particularly important. The results may have implications for public health policy and planning, as they indicate that pregnant women would decrease their risk of adverse birth outcomes by avoiding exposure to high temperatures and seeking cool environments during hot days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the greatest challenges for the study of photocatalysts is to devise new catalysts that possess high activity under visible light illumination. This would allow the use of an abundant and green energy source, sunlight, to drive chemical reactions. Gold nanoparticles strongly absorb both visible light and UV light. It is therefore possible to drive chemical reactions utilising a significant fraction of full sunlight spectrum. Here we prepared gold nanoparticles supported on various oxide powders, and reported a new finding that gold nanoparticles on oxide supports exhibit significant activity for the oxidation of formaldehyde and methanol in the air at ambient temperature, when illuminated with visible light. We suggested that visible light can greatly enhance local electromagnetic fields and heat gold nanoparticles due to surface plasmon resonance effect which provides activation energy for the oxidation of organic molecules. Moreover, the nature of the oxide support has an important influence on the activity of the gold nanoparticles. The finding reveals the possibility to drive chemical reactions with sunlight on gold nanoparticles at ambient temperature, highlighting a new direction for research on visible light photocatalysts. Gold nanoparticles supported on oxides also exhibit significant dye oxidation activity under visible light irradiation in aqueous solution at ambient temperature. Turnover frequencies of the supported gold nanoparticles for the dye degradation are much higher than titania based photocatalysts under both visible and UV light. These gold photocatalysts can also catalyse phenol degradation as well as selective oxidation of benzyl alcohol under UV light. The reaction mechanism for these photocatalytic oxidations was studied. Gold nanoparticles exhibit photocatalytic activity due to visible light heating gold electrons in 6sp band, while the UV absorption results in electron holes in gold 5d band to oxidise organic molecules. Silver nanoparticles also exhibit considerable visible light and UV light absorption due to surface plasmon resonance effect and the interband transition of 4d electrons to the 5sp band, respectively. Therefore, silver nanoparticles are potentially photocatalysts that utilise the solar spectrum effectively. Here we reported that silver nanoparticles at room temperature can be used to drive chemical reactions when illuminated with light throughout the solar spectrum. The significant activities for dye degradation by silver nanoparticles on oxide supports are even better than those by semiconductor photocatalysts. Moreover, silver photocatalysts also can degrade phenol and drive the oxidation of benzyl alcohol to benzaldehyde under UV light. We suggested that surface plasmon resonance effect and interband transition of silver nanoparticles can activate organic molecule oxidations under light illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stimulated human whole saliva (WS) was used to study the dynamics of papain hydrolysis at defined pH, ionic strength and temperature with the view of reducing an acquired pellicle. A quartz crystal microbalance with dissipation (QCM-D) was used to monitor the changes in frequency due to enzyme hydrolysis of WS films and the hydrolytic parameters were calculated using an empirical model. The morphological and conformational changes of the salivary films before and after enzymatic hydrolysis were characterized by atomic force microscopy (AFM) imaging and grazing angle infrared spectroscopy (GA-FTIR) spectra, respectively. The characteristics of papain hydrolysis of WS films were pH-, ionic strength- and temperature-dependent. The WS films were partially removed by the action of enzyme, resulting thinner and smoother surfaces. The IR data suggested that hydrolysis-induced deformation did not occur onto the remnants salivary films. The processes of papain hydrolysis of WS films can be controlled by properly regulating pH, ionic strength and temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed convection of a two-dimensional laminar incompressible flow along a horizontal flat plate with streamwise sinusoidal surface temperature has been numerically investigated for different values of Rayleigh number and Reynolds number for constant values of Prandtl number, amplitude and frequency of periodic temperature. The numerical scheme is based on the finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm. The fluid considered in this study is air. The results are obtained for the Rayleigh number and Reynolds number ranging from 102 to 104 and 1 to 100, respectively, with constant physical properties for the fluid medium considered. Velocity and temperature profiles, streamlines, isotherms, and average Nusselt numbers are presented to observe the effect of the investigating parameters on fluid flow and heat transfer characteristics. The present results show that the convective phenomena are greatly influenced by the variation of Rayleigh numbers and Reynolds number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured tungsten oxide thin film based gas sensors have been developed by thermal evaporation method to detect CO at low operating temperatures. The influence of Fe-doping and annealing heat treatment on microstructural and gas sensing properties of these films have been investigated. Fe was incorporated in WO3 film by co-evaporation and annealing was performed at 400oC for 2 hours in air. AFM analysis revealed a grain size of about 10-15 nm in all the films. GIXRD analysis showed that as-deposited films are amorphous and annealing at 400oC improved the crystallinity. Raman and XRD analysis indicated that Fe is incorporated in the WO3 matrix as a substitutional impurity, resulting in shorter O-W-O bonds and lattice cell parameters. Doping with Fe contributed significantly towards CO sensing performance of WO3 thin films. A good response to various concentrations (10-1000 ppm) of CO has been achieved with 400oC annealed Fe-doped WO3 film at a low operating temperature of 150oC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between weather and mortality has been observed for centuries. Recently, studies on temperature-related mortality have become a popular topic as climate change continues. Most of the previous studies found that exposure to hot or cold temperature affects mortality. This study aims to address three research questions: 1. What is the overall effect of daily mean temperature variation on the elderly mortality in the published literature using a meta-analysis approach? 2. Does the association between temperature and mortality differ with age, sex, or socio-economic status in Brisbane? 3. How is the magnitude of the lag effects of the daily mean temperature on mortality varied by age and cause-of-death groups in Brisbane? In the meta-analysis, there was a 1-2 % increase in all-cause mortality for a 1ºC decrease during cold temperature intervals and a 2-5% increase for a 1ºC increment during hot temperature intervals among the elderly. Lags of up to 9 days in exposure to cold temperature intervals were statistically significantly associated with all-cause mortality, but no significant lag effects were observed for hot temperature intervals. In Brisbane, the harmful effect of high temperature (over 24ºC) on mortality appeared to be greater among the elderly than other age groups. The effect estimate among women was greater than among men. However, No evidence was found that socio-economic status modified the temperature-mortality relationship. The results of this research also show longer lag effects in cold days and shorter lag effects in hot days. For 3-day hot effects associated with 1°C increase above the threshold, the highest percent increases in mortality occurred among people aged 85 years or over (5.4% (95% CI: 1.4%, 9.5%)) compared with all age group (3.2% (95% CI: 0.9%, 5.6%)). The effect estimate among cardiovascular deaths was slightly higher than those among all-cause mortality. For overall 21-day cold effects associated with a 1°C decrease below the threshold, the percent estimates in mortality for people aged 85 years or over, and from cardiovascular diseases were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%), respectively compared with all age group (2.0% (95% CI: 0.7%, 3.3%)). Little research of this kind has been conducted in the Southern Hemisphere. This PhD research may contribute to the quantitative assessment of the overall impact, effect modification and lag effects of temperature variation on mortality in Australia and The findings may provide useful information for the development and implementation of public health policies to reduce and prevent temperature-related health problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetohydrodynamic (MHD) natural convection laminar flow from an iso-thermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature will be discussed with numerical simulations. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equa-tions are reduced to convenient form, which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of magnetohydrodynamic parameter, viscosity-variation parameter and viscous dissipation parameter. MHD flow in this geometry with temperature dependent viscosity is absent in the literature. The results obtained from the numerical simulations have been veri-fied by two methodologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Battery powered bed movers are becoming increasingly common within the hospital setting. The use of powered bed movers is believed to result in reduced physical efforts required by health care workers, which may be associated with a decreased risk of occupation related injuries. However, little work has been conducted assessing how powered bed movers impact on levels of physiological strain and muscle activation for the user. The muscular efforts associated with moving hospital beds using three different methods; manual pushing, StaminaLift Bed Mover (SBM) and Gzunda Bed Mover (GBM)were measured on six male subjects. Fourteen muscles were assessed moving a weighted hospital bed along a standardized route in an Australian hospital environment. Trunk inclination and upper spine acceleration were also quantified. Powered bed movers exhibited significantly lower muscle activation levels than manual pushing for the majority of muscles. When using the SBM, users adopted a more upright posture which was maintained while performing different tasks (e.g. turning a corner, entering a lift), while trunk inclination varied considerably for manual pushing and the GBM. The reduction in lower back muscular activation levels and the load reducing effect of a more upright posture may result in lower incidence of lower back injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of expoxy nanocomposites modified by multiwall carbon nanotubes (MWCNTs) were prepared by shear mixing and spin casting. The electrical behaviour and its dependence with temperature between 243 and 353 degrees Kelvin were characterized by measuring the direct current (DC) conductivity. Depending on the fabrication process, both linear and non-linear relationships between conductivity and temperature were observed. In addition, the thermal history also played a role in dictating the conductivity. The implications of these observations for potential application of these files as strain sensors are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses and summarises a recent systematic study on the implication of global warming on air conditioned office buildings in Australia. Four areas are covered, including analysis of historical weather data, generation of future weather data for the impact study of global warming, projection of building performance under various global warming scenarios, and evaluation of various adaptation strategies under 2070 high global warming conditions. Overall, it is found that depending on the assumed future climate scenarios and the location considered, the increase of total building energy use for the sample Australian office building may range from 0.4 to 15.1%. When the increase of annual average outdoor temperature exceeds 2 °C, the risk of overheating will increase significantly. However, the potential overheating problem could be completely eliminated if internal load density is significantly reduced.