999 resultados para Zhejiang Sheng


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the proximate analysis and ultimate analysis of sulfur in different semi-cokes generated from Rizhao bituminous coal and Beijing anthracite under different temperatures is done. Also the tendency of the contents of volatile, ash, fixed carbon and sulfur in different semi-cokes along with the different preparation temperatures is studied. Then the combustion experiment of semi-cokes in the drop-tube furnace system was carried out, and the kinetic parameters of different semi-cokes ware calculated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A full two-fluid model of reacting gas-particle flows with an algebraic unified second-order moment (AUSM) turbulence-chemistry model is used to simulate Beijing coal combustion and NOx formation. The sub-models are the k-epsilon-kp two-phase turbulence model, the EBU-Arrhenius volatile and CO combustion model, the six-flux radiation model, coal devolatilization model and char combustion model. The blocking effect on NOx formation is discussed. In addition, the chemical equilibrium analysis is used to predict NOx concentration at different temperature. Results of CID simulation and chemical equilibrium analysis show that, optimizing air dynamic parameters can delay the NOx formation and decrease NOx emission, but it is effective only in a restricted range. In order to decrease NOx emission near to zero, the re-burning or other chemical methods must be used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An internally circulating fluidized bed (ICFB) was applied to investigate the behavior of chlorine and sulfur during cofiring RDF and coal. The pollutant emissions in the flue gas were measured by Fourier transform infrared (FTIR) spectrometry (Gasmet DX-3000). In the tests, the concentrations of the species CO, CO2, HCl, and SO2 were measured online. Results indicated when cofiring RDF and char, due to the higher content of chlorine in RDF, the formation of HCl significantly increases. The concentration of SO2 is relatively low because alkaline metal in the fuel ash can absorb SO2. The concentration of CO emission during firing pure RDF is relatively higher and fluctuates sharply. With the CaO addition, the sulfur absorption by calcium quickly increases, and the desulfuration ratio is bigger than the dechlorination ratio. The chemical equilibrium method is applied to predict the behavior of chlorine. Results show that gaseous HCl emission increases with increasing RDF fraction, and gaseous KCl and NaCl formation might occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, an AC plasma arc reactorwithworkinggasofhydrogen is applied to destruct chemicalagents. The temperature attains 6000℃ in the arc area and over 2000℃ in the other space of the crucible. The Arsenic (As) contained chemical agent -Adams (DM) used in the experiment, was added into the plasmareactorwith the additives: Fe, CaO, and SiO_2, etc. Pyrolysis and destructionofchemicalagents occurs very quickly in the high-temperature reactor. Gaseous hydrogen was injected into the reactor to form a reductive environment, to reduce the formation of As_2O_3 etc. In the bottom of the crucible, the solid residues of toxicant and additives were melted and formed as vitrified slag. The off-gas was treated by a wet scrubber. The amounts of arsenic distributed in the off-gas, vitrified slag, waste water and solids (soot) were measured. The result shows DM is completely destructed in the plasmareactor. The Arsenic content in the off-gas, vitrified slag, waste water and soot are 0.052 mg/l, 3.0%, 10.44 mg/l, and 5.1% respectively, which will be disposed as the pollutant matters. The results show that the plasma technology is an environmentally friendly technology to destruct chemicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spray of emulsified fuel, composed of diesel fuel, water and methanol can make micro-explosion under high temperature conditions, and the viscosity and the atomization characteristics of emulsion have significant effects on the micro- explosion of emulsions. To clarify the combustion mechanism of water-in-oil emulsion sprays, combustion bomb experiments were carried out, and the droplet group micro- explosions in W/O fuel emulsion sprays in a high-pressure, high-temperature bomb were observed clearly by a multi-pulsed, off-axis, image-plane ruby laser holocamera and continuously by a high-speed CCD camera.The viscosity and atomization characteristics of emulsions were also studied experimentally. The experimental results show that the higher concentration of the aqueous phase (water-methanol) (<50%) increases the viscosity of the emulsions, especially for higher agent concentration, and higher aqueous phase concentration and higher viscosity results in lager Sauter Mean Diameter (SMD). The experiment results also show that the different kinds of emulsifying agents, with different Hydrophile-Lipophile Balance (HLB) values, have significant influence on the viscosity of the emulsions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper shows the result of experimental studies of the influence of viscosities, surface tensions on atomization characteristics of water/methanol and diesel emulsions. Three emulsifying agents Y01, Y02 and Y03, with viscosity of 1.32 ~ 1.5 Pa·s and HLB values of 5.36, 4.83 and 4.51 respectively was produced by Span 80 and Tween 60. In the W/O emulsions, the aqueous phase is between 10% and 50%; the agent concentration added is 0.8 ~ 8.0%. The viscosity of the emulsions is 0.003 ~ 0.02 Pa·s, and the surface tension is 0.04 ~ 0.1 N/m. The types and concentrations of agents and the aqueous phase ( < 50%) significantly influence the viscosity of the emulsions and the Sauter Mean Diameter, measured by Malvern Particle Analyzer SERIES 2600.