996 resultados para Wind shear


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steel roofs made of thin cold-formed steel roof claddings and battens are widely used in low-rise residential and industrial buildings all around the world. However, they suffer from premature localised pull-through failures in the batten to rafter connections during high wind events. A recent study proposed a suitable design equation for the pull-through failures of thin steel roof battens. However, it was limited to static wind uplift loading. In contrast, most cyclone/storm events produce cyclic wind uplift forces on roofs for a significantly long period, thus causing premature fatigue pull-through failures at lower loads. Therefore, a series of constant amplitude cyclic load tests was conducted on small and full scale roof panels made of a commonly used industrial roof batten to develop their S-N curves. A series of multi-level cyclic tests, including the recently introduced low-high-low (LHL) fatigue loading test, was also undertaken to simulate a design cyclone. Using the S-N curves, the static pull-through design capacity equation was modified to include the effects of fatigue. Applicability of Miner’s rule was evaluated in order to predict the fatigue damage caused by multi-level cyclic tests such as the LHL test, and suitable modifications were made. The combined use of the modified Miner’s law and the S-N curve of roof battens will allow a conservative estimation of the fatigue design capacity of roof battens without conducting the LHL tests simulating a design cyclone. This paper presents the details of this study, and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an experimental and theoretical Study of a laminar separation bubble and the associated linear stability mechanisms. Experiments were performed over a flat plate kept in a wind tunnel, with an imposed pressure gradient typical of an aerofoil that would involve a laminar separation bubble. The separation bubble was characterized by measurement of surface-pressure distribution and streamwise velocity using hot-wire anemometry. Single component hot-wire anemometry was also used for a detailed study of the transition dynamics. It was foundthat the so-called dead-air region in the front portion of the bubble corresponded to a region of small disturbance amplitudes, with the amplitude reaching a maximum value close to the reattachment point. An exponential growth rate of the disturbance was seen in the region upstream of the mean maximum height of the bubble, and this was indicative of a linear instability mechanism at work. An infinitesimal disturbance was impulsively introduced into the boundary layer upstream of separation location, and the wave packet was tracked (in an ensemble-averaged sense) while it was getting advected downstream. The disturbance was found to be convective in nature. Linear stability analyses (both the Orr-Sommerfeld and Rayleigh calculations) were performed for mean velocity profiles, starting from an attached adverse-pressure-gradient boundary layer all the way up to the front portion of the separation-bubble region (i.e. up to the end of the dead-air region in which linear evolution of the disturbance could be expected). The conclusion from the present work is that the primary instability mechanism in a separation bubble is inflectional in nature, and its origin can be traced back to upstream of the separation location. In other words, the inviscid inflectional instability of the separated shear layer should be logically seen as an extension of the instability of the upstream attached adverse-pressure-gradient boundary layer. This modifies the traditional view that pegs the origin of the instability in a separation bubble to the detached shear layer Outside the bubble, with its associated Kelvin-Helmholtz mechanism. We contendthat only when the separated shear layer has moved considerably away from the wall (and this happens near the maximum-height location of the mean bubble), a description by the Kelvin-Helmholtz instability paradigm, with its associated scaling principles, Could become relevant. We also propose a new scaling for the most amplified frequency for a wall-bounded shear layer in terms of the inflection-point height and the vorticity thickness and show it to be universal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IN the last two decades, the instantaneous structure of a turbulent boundary layer has been examined by many in an effort to understand the dynamics of the flow. Distinct and well-defined flow patterns that seem to have great relevance to the turbulence production mechanism have been observed in the wall region.1'2 The flow near the wall is intermittent with periodic eruptions of the fluid, a phenomenon generally termed "bursting process." Earlier investigations in this field were limited to liquid flows at low speeds and the entire flowpattern was observed using flow visualization techniques.Study was later extended to boundary-layer flows in windtunnels at higher speeds and Reynolds numbers using hot-wiresignals for the analysis of the bursting phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The near-tip deformation field in a high-constraint three-point bend specimen of pure aluminium single crystal is studied using in situ electron back-scattered diffraction and optical metallography. The orientation considered has the notch lying on the (0 1 0) plane and the notch front along direction. Results clearly show the occurrence of a kink shear sector boundary at 90° to the notch line on the specimen free surface as predicted by the analytical model of Rice [J.R. Rice, Mech. Mater. 6 (1987) 317].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crush bands that form during plastic deformation of closed-cell metal foams are often inclined at 11-20 degrees to the loading axis, allowing for shear displacement of one part of the foam with respect to the other. Such displacement is prevented by the presence of a lateral constraint. This was analysed in this study, which shows that resistance against shear by the constraint leads to the strain-hardening effect in the foam that has been reported in a recent experimental study. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluates how the advection of precipitation, or wind drift, between the radar volume and ground affects radar measurements of precipitation. Normally precipitation is assumed to fall vertically to the ground from the contributing volume, and thus the radar measurement represents the geographical location immediately below. In this study radar measurements are corrected using hydrometeor trajectories calculated from measured and forecasted winds, and the effect of trajectory-correction on the radar measurements is evaluated. Wind drift statistics for Finland are compiled using sounding data from two weather stations spanning two years. For each sounding, the hydrometeor phase at ground level is estimated and drift distance calculated using different originating level heights. This way the drift statistics are constructed as a function of range from radar and elevation angle. On average, wind drift of 1 km was exceeded at approximately 60 km distance, while drift of 10 km was exceeded at 100 km distance. Trajectories were calculated using model winds in order to produce a trajectory-corrected ground field from radar PPI images. It was found that at the upwind side from the radar the effective measuring area was reduced as some trajectories exited the radar volume scan. In the downwind side areas near the edge of the radar measuring area experience improved precipitation detection. The effect of trajectory-correction is most prominent in instant measurements and diminishes when accumulating over longer time periods. Furthermore, measurements of intensive and small scale precipitation patterns benefit most from wind drift correction. The contribution of wind drift on the uncertainty of estimated Ze (S) - relationship was studied by simulating the effect of different error sources to the uncertainty in the relationship coefficients a and b. The overall uncertainty was assumed to consist of systematic errors of both the radar and the gauge, as well as errors by turbulence at the gauge orifice and by wind drift of precipitation. The focus of the analysis is error associated with wind drift, which was determined by describing the spatial structure of the reflectivity field using spatial autocovariance (or variogram). This spatial structure was then used with calculated drift distances to estimate the variance in radar measurement produced by precipitation drift, relative to the other error sources. It was found that error by wind drift was of similar magnitude with error by turbulence at gauge orifice at all ranges from radar, with systematic errors of the instruments being a minor issue. The correction method presented in the study could be used in radar nowcasting products to improve the estimation of visibility and local precipitation intensities. The method however only considers pure snow, and for operational purposes some improvements are desirable, such as melting layer detection, VPR correction and taking solid state hydrometeor type into account, which would improve the estimation of vertical velocities of the hydrometeors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An estimated 110 Mt of dust is eroded by wind from the Australian land surface each year, most of which originates from the arid and semi-arid rangelands. Livestock production is thought to increase the susceptibility of the rangelands to wind erosion by reducing vegetation cover and modifying surface soil stability. However, research is yet to quantify the impacts of grazing land management on the erodibility of the Australian rangelands, or determine how these impacts vary among land types and over time. We present a simulation analysis that links a pasture growth and animal production model (GRASP) to the Australian Land Erodibility Model (AUSLEM) to evaluate the impacts of stocking rate, stocking strategy and land condition on the erodibility of four land types in western Queensland, Australia. Our results show that declining land condition, over stocking, and using inflexible stocking strategies have potential to increase land erodibility and amplify accelerated soil erosion. However, land erodibility responses to grazing are complex and influenced by land type sensitivities to different grazing strategies and local climate characteristics. Our simulations show that land types which are more resilient to livestock grazing tend to be least susceptible to accelerated wind erosion. Increases in land erodibility are found to occur most often during climatic transitions when vegetation cover is most sensitive to grazing pressure. However, grazing effects are limited during extreme wet and dry periods when the influence of climate on vegetation cover is strongest. Our research provides the opportunity to estimate the effects of different land management practices across a range of land types, and provides a better understanding of the mechanisms of accelerated erosion resulting from pastoral activities. The approach could help further assessment of land erodibility at a broader scale notably if combined with wind erosion models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shear difference method which is commonly used for the separation of normal stresses using photoelastic techniques depends on the step-by-step integration of one of the differential equations of equilibrium. It is assumed that the isoclinic and the isochromatic parameters measured by the conventional methods pertain to the state of stress at the midpoint of the light path. In practice, a slice thin enough for the above assumption to be true and at the same time thick enough to give differences in the shear-stress values over the thickness is necessary. The paper discusses the errors introduced in the isoclinic and isochromatic values by the conventional methods neglecting the variation of stresses along the light path. It is shown that while the error introduced in the measurement of the isochromatic parameter may not be serious, the error caused in the isoclinic measurement may lead to serious errors. Since the shear-difference method involves step-by-step integration the error introduced will be of a cumulative nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind power has grown fast internationally. It can reduce the environmental impact of energy production and increase energy security. Finland has turbine industry but wind electricity production has been slow, and nationally set capacity targets have not been met. I explored social factors that have affected the slow development of wind power in Finland by studying the perceptions of Finnish national level wind power actors. By that I refer to people who affect the development of wind power sector, such as officials, politicians, and representatives of wind industries and various organisations. The material consisted of interviews, a questionnaire, and written sources. The perceptions of wind power, its future, and methods to promote it were divided. They were studied through discourse analysis, content analysis, and scenario construction. Definition struggles affect views of the significance and potential of wind power in Finland, and also affect investments in wind power and wind power policy choices. Views of the future were demonstrated through scenarios. The views included scenarios of fast growth, but in the most pessimistic views, wind power was not thought to be competitive without support measures even in 2025, and the wind power capacity was correspondingly low. In such a scenario, policy tool choices were expected to remain similar to ones in use at the time of the interviews. So far, the development in Finland has followed closely this pessimistic scenario. Despite the scepticism about wind electricity production, wind turbine industry was seen as a credible industry. For many wind power actors as well as for the Finnish wind power policy, the turbine industry is a significant motive to promote wind power. Domestic electricity production and the export turbine industry are linked in discourse through so-called home market argumentation. Finnish policy tools have included subsidies, research and development funding, and information policies. The criteria used to evaluate policy measures were both process-oriented and value-based. Feed-in tariffs and green certificates that are common elsewhere have not been taken to use in Finland. Some interviewees considered such tools unsuitable for free electricity markets and for the Finnish policy style, dictatorial, and being against western values. Other interviewees supported their use because of their effectiveness. The current Finnish policy tools are not sufficiently effective to increase wind power production significantly. Marginalisation of wind power in discourses, pessimistic views of the future, and the view that the small consumer demand for wind electricity represents the political views of citizens towards promoting wind power, make it more difficult to take stronger policy measures to use. Wind power has not yet significantly contributed to the ecological modernisation of the energy sector in Finland, but the situation may change as the need to reduce emissions from energy production continues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange channel beams. It is a monosymmetric channel section made by intermittently rivet fastening two torsionally rigid rectangular hollow flanges to a web plate. This process enables the end users to choose an effective combination of different web and flange plate sizes to achieve optimum design capacities. Recent research studies focused mainly on the shear behaviour of the most commonly used lipped channel beam and welded hollow flange beam sections. However, the shear behaviour of rivet fastened RHFCB has not been investigated. Therefore a detailed experimental study involving 24 shear tests was undertaken to investigate the shear behaviour and capacities of rivet fastened RHFCBs. Simply supported test specimens of RHFCB with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Comparison of experimental shear capacities with corresponding predictions from the current Australian cold-formed steel design rules showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Such enhancements to the shear behaviour and capacity were achieved with a rivet spacing of 100 mm. Improved design rules were proposed for rivet fastened RHFCBs based on the current shear design equations in AISI S100 and the direct strength method. This paper presents the details of this experimental investigation and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange beams. Many experimental and numerical studies have been carried out in the past to investigate the shear behaviour of lipped channel beams. However, no research has been undertaken on the shear behaviour of rivet fastened RHFCBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of rivet fastened RHFCBs. In this research finite element models of rivet fastened RHFCBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. This paper presents the details of the finite element models of rivet fastened RHFCBs and the results. Both finite element analysis and experimental results showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Appropriate improvements have been proposed for the design rules of shear strength of rivet fastened RHFCBs within the Direct Strength Method format.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rivet-fastened rectangular hollow flange channel beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange steel beams. No research has been undertaken on the shear behaviour and strength of rivet fastened RHFCBs with web openings. Hence a detailed experimental study involving 30 shear tests was undertaken to investigate the shear behaviour and strength of rivet fastened RHFCBs with web openings. Experimental results showed that the current design rules are inadequate for the shear design of Rivet fastened RHFCBs with web openings. Improved design equations have been proposed for the shear strength of rivet fastened RHFCBs with web openings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of stochastic wind power has accentuated a challenge for power system stability assessment. Since the power system is a time-variant system under wind generation fluctuations, pure time-domain simulations are difficult to provide real-time stability assessment. As a result, the worst-case scenario is simulated to give a very conservative assessment of system transient stability. In this study, a probabilistic contingency analysis through a stability measure method is proposed to provide a less conservative contingency analysis which covers 5-min wind fluctuations and a successive fault. This probabilistic approach would estimate the transfer limit of a critical line for a given fault with stochastic wind generation and active control devices in a multi-machine system. This approach achieves a lower computation cost and improved accuracy using a new stability measure and polynomial interpolation, and is feasible for online contingency analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.