965 resultados para Web-Assisted Error Detection
Resumo:
INTAMAP is a Web Processing Service for the automatic spatial interpolation of measured point data. Requirements were (i) using open standards for spatial data such as developed in the context of the Open Geospatial Consortium (OGC), (ii) using a suitable environment for statistical modelling and computation, and (iii) producing an integrated, open source solution. The system couples an open-source Web Processing Service (developed by 52°North), accepting data in the form of standardised XML documents (conforming to the OGC Observations and Measurements standard) with a computing back-end realised in the R statistical environment. The probability distribution of interpolation errors is encoded with UncertML, a markup language designed to encode uncertain data. Automatic interpolation needs to be useful for a wide range of applications and the algorithms have been designed to cope with anisotropy, extreme values, and data with known error distributions. Besides a fully automatic mode, the system can be used with different levels of user control over the interpolation process.
Resumo:
Few-mode fiber transmission systems are typically impaired by mode-dependent loss (MDL). In an MDL-impaired link, maximum-likelihood (ML) detection yields a significant advantage in system performance compared to linear equalizers, such as zero-forcing and minimum-mean square error equalizers. However, the computational effort of the ML detection increases exponentially with the number of modes and the cardinality of the constellation. We present two methods that allow for near-ML performance without being afflicted with the enormous computational complexity of ML detection: improved reduced-search ML detection and sphere decoding. Both algorithms are tested regarding their performance and computational complexity in simulations of three and six spatial modes with QPSK and 16QAM constellations.
Resumo:
We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.
Resumo:
We demonstrate the first experimental implementation of a 3.9-Gb/s differential binary phase-shift keying (DBPSK)-based double sideband (DSB) optical fast orthogonal frequency-division-multiplexing (FOFDM) system with a reduced subcarrier spacing equal to half the symbol rate over 300m of multimode fiber (MMF) using intensity-modulation and direct-detection (IM/DD). The required received optical power at a bit-error rate (BER) of 10(-3) was measured to be similar to -14.2 dBm with a receiver sensitivity penalty of only similar to 0.2 dB when compared to the back-to-back case. Experimental results agree very well with the theoretical predictions.
Resumo:
Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework called joint sentiment-topic (JST) model based on latent Dirichlet allocation (LDA), which detects sentiment and topic simultaneously from text. A reparameterized version of the JST model called Reverse-JST, obtained by reversing the sequence of sentiment and topic generation in the modeling process, is also studied. Although JST is equivalent to Reverse-JST without a hierarchical prior, extensive experiments show that when sentiment priors are added, JST performs consistently better than Reverse-JST. Besides, unlike supervised approaches to sentiment classification which often fail to produce satisfactory performance when shifting to other domains, the weakly supervised nature of JST makes it highly portable to other domains. This is verified by the experimental results on data sets from five different domains where the JST model even outperforms existing semi-supervised approaches in some of the data sets despite using no labeled documents. Moreover, the topics and topic sentiment detected by JST are indeed coherent and informative. We hypothesize that the JST model can readily meet the demand of large-scale sentiment analysis from the web in an open-ended fashion.
Resumo:
Monitoring land-cover changes on sites of conservation importance allows environmental problems to be detected, solutions to be developed and the effectiveness of actions to be assessed. However, the remoteness of many sites or a lack of resources means these data are frequently not available. Remote sensing may provide a solution, but large-scale mapping and change detection may not be appropriate, necessitating site-level assessments. These need to be easy to undertake, rapid and cheap. We present an example of a Web-based solution based on free and open-source software and standards (including PostGIS, OpenLayers, Web Map Services, Web Feature Services and GeoServer) to support assessments of land-cover change (and validation of global land-cover maps). Authorised users are provided with means to assess land-cover visually and may optionally provide uncertainty information at various levels: from a general rating of their confidence in an assessment to a quantification of the proportions of land-cover types within a reference area. Versions of this tool have been developed for the TREES-3 initiative (Simonetti, Beuchle and Eva, 2011). This monitors tropical land-cover change through ground-truthing at latitude / longitude degree confluence points, and for monitoring of change within and around Important Bird Areas (IBAs) by Birdlife International and the Royal Society for the Protection of Birds (RSPB). In this paper we present results from the second of these applications. We also present further details on the potential use of the land-cover change assessment tool on sites of recognised conservation importance, in combination with NDVI and other time series data from the eStation (a system for receiving, processing and disseminating environmental data). We show how the tool can be used to increase the usability of earth observation data by local stakeholders and experts, and assist in evaluating the impact of protection regimes on land-cover change.
Resumo:
The Semantic Web relies on carefully structured, well defined, data to allow machines to communicate and understand one another. In many domains (e.g. geospatial) the data being described contains some uncertainty, often due to incomplete knowledge; meaningful processing of this data requires these uncertainties to be carefully analysed and integrated into the process chain. Currently, within the SemanticWeb there is no standard mechanism for interoperable description and exchange of uncertain information, which renders the automated processing of such information implausible, particularly where error must be considered and captured as it propagates through a processing sequence. In particular we adopt a Bayesian perspective and focus on the case where the inputs / outputs are naturally treated as random variables. This paper discusses a solution to the problem in the form of the Uncertainty Markup Language (UncertML). UncertML is a conceptual model, realised as an XML schema, that allows uncertainty to be quantified in a variety of ways i.e. realisations, statistics and probability distributions. UncertML is based upon a soft-typed XML schema design that provides a generic framework from which any statistic or distribution may be created. Making extensive use of Geography Markup Language (GML) dictionaries, UncertML provides a collection of definitions for common uncertainty types. Containing both written descriptions and mathematical functions, encoded as MathML, the definitions within these dictionaries provide a robust mechanism for defining any statistic or distribution and can be easily extended. Universal Resource Identifiers (URIs) are used to introduce semantics to the soft-typed elements by linking to these dictionary definitions. The INTAMAP (INTeroperability and Automated MAPping) project provides a use case for UncertML. This paper demonstrates how observation errors can be quantified using UncertML and wrapped within an Observations & Measurements (O&M) Observation. The interpolation service uses the information within these observations to influence the prediction outcome. The output uncertainties may be encoded in a variety of UncertML types, e.g. a series of marginal Gaussian distributions, a set of statistics, such as the first three marginal moments, or a set of realisations from a Monte Carlo treatment. Quantifying and propagating uncertainty in this way allows such interpolation results to be consumed by other services. This could form part of a risk management chain or a decision support system, and ultimately paves the way for complex data processing chains in the Semantic Web.
Resumo:
Bacterial lipoproteins have many important functions and represent a class of possible vaccine candidates. The prediction of lipoproteins from sequence is thus an important task for computational vaccinology. Naïve-Bayesian networks were trained to identify SpaseII cleavage sites and their preceding signal sequences using a set of 199 distinct lipoprotein sequences. A comprehensive range of sequence models was used to identify the best model for lipoprotein signal sequences. The best performing sequence model was found to be 10-residues in length, including the conserved cysteine lipid attachment site and the nine residues prior to it. The sensitivity of prediction for LipPred was 0.979, while the specificity was 0.742. Here, we describe LipPred, a web server for lipoprotein prediction; available at the URL: http://www.jenner.ac.uk/LipPred/. LipPred is the most accurate method available for the detection of SpaseIIcleaved lipoprotein signal sequences and the prediction of their cleavage sites.
Resumo:
An approach to a specialized website creation – club of distance courses authors – on the basis of Virtual Learning Space “Web-Class KhPI” is implemented and suggested in the article.
Resumo:
In this work, we determine the coset weight spectra of all binary cyclic codes of lengths up to 33, ternary cyclic and negacyclic codes of lengths up to 20 and of some binary linear codes of lengths up to 33 which are distance-optimal, by using some of the algebraic properties of the codes and a computer assisted search. Having these weight spectra the monotony of the function of the undetected error probability after t-error correction P(t)ue (C,p) could be checked with any precision for a linear time. We have used a programm written in Maple to check the monotony of P(t)ue (C,p) for the investigated codes for a finite set of points of p € [0, p/(q-1)] and in this way to determine which of them are not proper.
Resumo:
Our research explores the possibility of categorizing webpages and webpage genre by structure or layout. Based on our results, we believe that webpage structure could play an important role, along with textual and visual keywords, in webpage categorization and searching.
Resumo:
We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.
Resumo:
We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.
Resumo:
We report a distributed multifunctional fiber sensing network based on weak-fiber Bragg gratings (WFBGs) and long period fiber grating (LPG) assisted OTDR system. The WFBGs are applied for temperature, strain, and vibration monitoring at key position, and the LPG is used as a linear filter in the system to convert the wavelength shift of WFBGs caused by environmental change into the power change. The simulation results show that it is possible to integrate more than 4472 WFBGs in the system when the reflectivity of WFBGs is less than {10}^{-5}. Besides, the back-Rayleigh scattering along the whole fiber can also be detected which makes distributed bend sensing possible. As an experimental demonstration, we have used three WFBGs UV-inscribed with 50-m interval at the end of a 2.6-km long fiber, which part was subjected for temperature, strain, and vibration sensing, respectively. The ratio of the intensity of output and input light is used for temperature and strain sensing, and the results show strain and temperature sensitivities are 4.2 \times {10}^{-4}{/\mu \varepsilon } and 5.9 \times {10}^{-3}{{/ {^{\circ }}\textrm {C}}} , respectively. Detection of multiple vibrations and single vibration with the broad frequency band up to 500 Hz are also achieved. In addition, distributed bend sensing which could be simultaneously realized in this system has been proposed.
Resumo:
The concept of measurement-enabled production is based on integrating metrology systems into production processes and generated significant interest in industry, due to its potential to increase process capability and accuracy, which in turn reduces production times and eliminates defective parts. One of the most promising methods of integrating metrology into production is the usage of external metrology systems to compensate machine tool errors in real time. The development and experimental performance evaluation of a low-cost, prototype three-axis machine tool that is laser tracker assisted are described in this paper. Real-time corrections of the machine tool's absolute volumetric error have been achieved. As a result, significant increases in static repeatability and accuracy have been demonstrated, allowing the low-cost three-axis machine tool to reliably reach static positioning accuracies below 35 μm throughout its working volume without any prior calibration or error mapping. This is a significant technical development that demonstrated the feasibility of the proposed methods and can have wide-scale industrial applications by enabling low-cost and structural integrity machine tools that could be deployed flexibly as end-effectors of robotic automation, to achieve positional accuracies that were the preserve of large, high-precision machine tools.