990 resultados para Wave speed
Resumo:
A simple and effective down-sample algorithm, Peak-Hold-Down-Sample (PHDS) algorithm is developed in this paper to enable a rapid and efficient data transfer in remote condition monitoring applications. The algorithm is particularly useful for high frequency Condition Monitoring (CM) techniques, and for low speed machine applications since the combination of the high sampling frequency and low rotating speed will generally lead to large unwieldy data size. The effectiveness of the algorithm was evaluated and tested on four sets of data in the study. One set of the data was extracted from the condition monitoring signal of a practical industry application. Another set of data was acquired from a low speed machine test rig in the laboratory. The other two sets of data were computer simulated bearing defect signals having either a single or multiple bearing defects. The results disclose that the PHDS algorithm can substantially reduce the size of data while preserving the critical bearing defect information for all the data sets used in this work even when a large down-sample ratio was used (i.e., 500 times down-sampled). In contrast, the down-sample process using existing normal down-sample technique in signal processing eliminates the useful and critical information such as bearing defect frequencies in a signal when the same down-sample ratio was employed. Noise and artificial frequency components were also induced by the normal down-sample technique, thus limits its usefulness for machine condition monitoring applications.
Resumo:
In Australia, speeding remains a substantial contributor to road trauma. The National Road Safety Strategy (2011-2020) highlighted the need to harness community support for current and future speed management strategies. Australia is known for intensive speed camera programs which are both automated and manual, employing covert and overt methods. Recent developments in the area of automated speed enforcement in Australia help to illustrate the important link between community attitudes to speed enforcement and subsequent speed camera policy developments. A perceived lack of community confidence in camera programs prompted reviews in New South Wales and Victoria in 2011 by the jurisdictional Auditor-General. This paper explores automated speed camera enforcement in Australia with particular reference to the findings of these two reports as they relate to the level of public support for and community attitudes towards automated speed enforcement. It also provides comment on the evolving nature of automated speed enforcement according to previously identified controversies and dilemmas associated with speed camera programs.
Resumo:
A synthesis is presented of the predictive capability of a family of near-wall wall-normal free Reynolds stress models (which are completely independent of wall topology, i.e., of the distance fromthe wall and the normal-to-thewall orientation) for oblique-shock-wave/turbulent-boundary-layer interactions. For the purpose of comparison, results are also presented using a standard low turbulence Reynolds number k–ε closure and a Reynolds stress model that uses geometric wall normals and wall distances. Studied shock-wave Mach numbers are in the range MSW = 2.85–2.9 and incoming boundary-layer-thickness Reynolds numbers are in the range Reδ0 = 1–2×106. Computations were carefully checked for grid convergence. Comparison with measurements shows satisfactory agreement, improving on results obtained using a k–ε model, and highlights the relative importance of redistribution and diffusion closures, indicating directions for future modeling work.
Resumo:
The influence of inflow turbulence on the results of Favre–Reynolds-averaged Navier–Stokes computations of supersonic oblique-shock-wave/turbulent-boundary-layer interactions (shock-wave Mach-number MSW ∼2.9), using seven-equation Reynolds-stress model turbulence closures, is studied. The generation of inflow conditions (and the initialization of the flowfield) for mean flow, Reynolds stresses, and turbulence length scale, based on semi-analytic grid-independent boundary-layer profiles, is described in detail. Particular emphasis is given to freestream turbulence intensity and length scale. The influence of external-flow turbulence intensity is studied in detail both for flat-plate boundary-layer flow and for a compression-ramp interaction with large separation. It is concluded that the Reynolds-stress model correctly reproduces the effects of external flow turbulence.
Resumo:
China is motorizing rapidly, with associated urban road development and extensive construction of motorways. Speeding accounts for about 10% of fatalities, which represents a large decrease from a peak of 17.2% in 2004. Speeding has been addressed at a national level through the introduction of laws and procedural requirements in 2004, in provinces either across all road types or on motorways, and at city level. Typically, documentation of speed enforcement programmes has taken place when new technology (i.e. speed cameras) is introduced, and it is likely that many programmes have not been documented or widely reported. In particular, the national legislation of 2004 and its implementation was associated with a large reduction in fatalities attributed to speeding. In Guangdong Province, after using speed detection equipment, motorway fatalities due to speeding in 2005 decreased by 32.5% comparing with 2004. In Beijing, the number of traffic monitoring units which were used to photograph illegal traffic activities such as traffic light violations, speeding and using bus lanes illegally increased to 1958 by April 1, 2009, and in the future such automated enforcement will become the main means of enforcement, expected to account for 60% of all traffic enforcement in Beijing. This paper provides a brief overview of the speeding enforcement programmes in China which have been documented and their successes.
Resumo:
This report presents the top-line findings of the Australian Screen Producer survey conducted in December 2011. The report was prepared by Bergent Research and commissioned by the ARC Centre of Excellence for Creative Industries and Innovation (CCI), Queensland University of Technology, with assistance from the Centre for Screen Business, Australian Film Television and Radio School (AFTRS). The 2011 producer survey was a national study of the demographics, motivations, sentiments and activities of screen producers across four industry segments: Film, Television, Commercial and Digital Media. This survey is the second Australian Screen Producer survey and builds upon research undertaken in the Australian Screen Content Producer Survey conducted in 2009. The 2011 study is referred to in this report as Wave 2 and the 2009 study is referred to as Wave 1.
Resumo:
Average speed enforcement is a relatively new approach gaining popularity throughout Europe and Australia. This paper reviews the evidence regarding the impact of this approach on vehicle speeds, crashes rates and a number of additional road safety and public health outcomes. The economic and practical viability of the approach as a road safety countermeasure is also explored. A literature review, with an international scope, of both published and grey literature was conducted. There is a growing body of evidence to suggest a number of road safety benefits associated with average speed enforcement, including high rates of compliance with speed limits, reductions in average and 85th percentile speeds and reduced speed variability between vehicles. Moreover, the approach has been demonstrated to be particularly effective in reducing excessive speeding behaviour. Reductions in crash rates have also been reported in association with average speed enforcement, particularly in relation to fatal and serious injury crashes. In addition, the approach has been shown to improve traffic flow, reduce vehicle emissions and has also been associated with high levels of public acceptance. Average speed enforcement offers a greater network-wide approach to managing speeds that reduces the impact of time and distance halo effects associated with other automated speed enforcement approaches. Although comparatively expensive it represents a highly reliable approach to speed enforcement that produces considerable returns on investment through reduced social and economic costs associated with crashes.
Resumo:
An efficient numerical method to compute nonlinear solutions for two-dimensional steady free-surface flow over an arbitrary channel bottom topography is presented. The approach is based on a boundary integral equation technique which is similar to that of Vanden-Broeck's (1996, J. Fluid Mech., 330, 339-347). The typical approach for this problem is to prescribe the shape of the channel bottom topography, with the free-surface being provided as part of the solution. Here we take an inverse approach and prescribe the shape of the free-surface a priori while solving for the corresponding bottom topography. We show how this inverse approach is particularly useful when studying topographies that give rise to wave-free solutions, allowing us to easily classify eleven basic flow types. Finally, the inverse approach is also adapted to calculate a distribution of pressure on the free-surface, given the free-surface shape itself.
Resumo:
This study evaluated effects of defensive pressure on running velocity in footballers during the approach to kick a stationary football. Approach velocity and ball speed/accuracy data were recorded from eight football youth academy participants (15.25, SD=0.46 yrs). Participants were required to run to a football to cross it to a receiver to score against a goal-keeper. Defensive pressure was manipulated across three counterbalanced conditions: defender-absent (DA); defender-far (DF) and defender-near (DN). Pass accuracy (percentages of a total of 32 trials with 95% confidence limits in parenthesis) did not significantly reduce under changing defensive pressure: DA, 78% (55–100%); DF, 78% (61–96%); DN, 59% (40–79%). Ball speed (m·s−1) significantly reduced as defensive pressure was included and increased: DA, 23.10 (22.38–23.83); DF, 20.40 (19.69–21.11); DN, 19.22 (18.51–19.93). When defensive pressure was introduced, average running velocity of attackers did not change significantly: DA versus DF (m·s−1), 5.40 (5.30–5.51) versus 5.41 (5.34–5.48). Scaling defender starting positions closer to the start position of the attacker (DN) significantly increased average running velocity relative to the DA and DF conditions, 5.60 (5.50–5.71). In the final approach footfalls, all conditions significantly differed: DA, 5.69 (5.35–6.03); DF, 6 .22 (5.93–6.50); DN, 6.52 (6.23–6.80). Data suggested that approach velocity is constrained by both presence and initial distance of the defender during task performance. Implications are that the expression of kicking behaviour is specific to a performance context and some movement regulation features will not emerge unless a defender is present as a task constraint in practice.
Resumo:
There has been an increasing number of fatal road crashes in Malaysia in the last two decades. Among those who die on Malaysian roads are children aged 0 to 18 years (i.e., 15.5% in 2009) (Mohamed, Wong, Hashim, & Othman, 2011) . The involvement of children in road trauma, and particularly children when they are in and around school zones, generates concern among the general public. The present study utilised an extended Theory of Planned Behaviour (TPB) framework, incorporating the additional predictors of mindfulness and habit, to understand drivers’ intention to comply with the school zone speed limit (SZSL). The study aimed to examine the extent to which TPB constructs, and additional predictors of mindfulness and habit, predicted drivers’ behavioural intention to comply with the SZSL. Malaysian drivers (N = 210) participated in this study via an online survey. Hierarchical regression was conducted, and the results showed that attitude, subjective norm, perceived behavioural control, and habit were significant predictors of intention to comply with the SZSL. Specifically, drivers who expressed more positive attitudes towards compliance, greater belief that significant others would want them to comply, and more confidence in their control of their speed were more likely to report an intention to comply. These drivers appear to have developed a positive habit of compliance, which may simply be a result of the engineering measures in place around school zones in Malaysia. Mindfulness was not a significant predictor in the final model. These findings provide some support for the explanatory value of the extended TPB framework in understanding the factors influencing drivers’ intention to comply with the SZSL. The present study also provides information of potential value in the development of interventions, such as public education and mass media campaigns, aimed at improving drivers’ compliance with the SZSL.
Resumo:
Motorway off-ramps are a significant source of traffic congestion and collisions. Heavy diverging traffic to off-ramps slows down the mainline traffic speed. When the off-ramp queue spillbacks onto the mainline, it leads to a major breakdown of the motorway capacity and a significant threat to the traffic safety. This paper proposes using Variable Speed Limits (VSL) for protection of the motorway off-ramp queue and thus to promote safety in congested diverging areas. To support timely activation of VSL in advance of queue spillover, a proactive control strategy is proposed based on a real-time off-ramp queue estimation and prediction. This process determines the estimated queue size in the near-term future, on which the decision to change speed limits is made. VSL can effectively slow down traffic as it is mandatory that drivers follow the changed speed limits. A collateral benefit of VSL is its potential effect on drivers making them more attentive to the surrounding traffic conditions, and prepared for a sudden braking of the leading car. This paper analyses and quantifies these impacts and potential benefits of VSL on traffic safety and efficiency using the microsimulation approach.
Resumo:
Cell invasion, characterised by moving fronts of cells, is an essential aspect of development, repair and disease. Typically, mathematical models of cell invasion are based on the Fisher–Kolmogorov equation. These traditional parabolic models can not be used to represent experimental measurements of individual cell velocities within the invading population since they imply that information propagates with infinite speed. To overcome this limitation we study combined cell motility and proliferation based on a velocity–jump process where information propagates with finite speed. The model treats the total population of cells as two interacting subpopulations: a subpopulation of left–moving cells, $L(x,t)$, and a subpopulation of right–moving cells, $R(x,t)$. This leads to a system of hyperbolic partial differential equations that includes a turning rate, $\Lambda \ge 0$, describing the rate at which individuals in the population change direction of movement. We present exact travelling wave solutions of the system of partial differential equations for the special case where $\Lambda = 0$ and in the limit that $\Lambda \to \infty$. For intermediate turning rates, $0 < \Lambda < \infty$, we analyse the travelling waves using the phase plane and we demonstrate a transition from smooth monotone travelling waves to smooth nonmonotone travelling waves as $\Lambda$ decreases through a critical value $\Lambda_{crit}$. We conclude by providing a qualitative comparison between the travelling wave solutions of our model and experimental observations of cell invasion. This comparison indicates that the small $\Lambda$ limit produces results that are consistent with experimental observations.
Resumo:
Presented is the material and gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers. The graphene-like nano-sheets were characterized via scanning electron microscopy (SEM), atomic force microscopy(AFM)and X-ray photoelectron spectroscopy (XPS). The graphenelike nano-sheet/SAW sensors were exposed to different concentrations of hydrogen (H2) gas in a synthetic air at room temperature. The developed sensors exhibit good sensitivity towards low concentrations of H2 in ambient conditions, as well as excellent dynamic performance towards H2 at room temperature.
Resumo:
Thin films consisting of graphene-like nano-sheets were deposited onto LiTaO3 surface acoustic wave transducers. A thickness of less than 10 nm and the existence of C-C bond were observed during the characterization of graphene-like nano-sheets. Frequency shift of 18.7 kHz and 14.9 kHz towards 8.5 ppm NO2 at two different operating temperature, 40°C and 25°C, respectively, was observed.
Resumo:
A numerical study is presented to examine the fingering instability of a gravity-driven thin liquid film flowing down the outer wall of a vertical cylinder. The lubrication approximation is employed to derive an evolution equation for the height of the film, which is dependent on a single parameter, the dimensionless cylinder radius. This equation is identified as a special case of that which describes thin film flow down an inclined plane. Fully three-dimensional simulations of the film depict a fingering pattern at the advancing contact line. We find the number of fingers observed in our simulations to be in excellent agreement with experimental observations and a linear stability analysis reported recently by Smolka & SeGall (Phys Fluids 23, 092103 (2011)). As the radius of the cylinder decreases, the modes of perturbation have an increased growth rate, thus increasing cylinder curvature partially acts to encourage the contact line instability. In direct competition with this behaviour, a decrease in cylinder radius means that fewer fingers are able to form around the circumference of the cylinder. Indeed, for a sufficiently small radius, a transition is observed, at which point the contact line is stable to transverse perturbations of all wavenumbers. In this regime, free surface instabilities lead to the development of wave patterns in the axial direction, and the flow features become perfectly analogous to the two-dimensional flow of a thin film down an inverted plane as studied by Lin & Kondic (Phys Fluids 22, 052105 (2010)). Finally, we simulate the flow of a single drop down the outside of the cylinder. Our results show that for drops with low volume, the cylinder curvature has the effect of increasing drop speed and hence promoting the phenomenon of pearling. On the other hand, drops with much larger volume evolve to form single long rivulets with a similar shape to a finger formed in the aforementioned simulations.