997 resultados para Water Escape
Resumo:
Cooperation between multiple environmental decision-makers and activities is necessary to address the impacts of diffuse sources of agricultural pollution on the water quality entering Australia’s Great Barrier Reef (GBR). Water planning efforts requires available knowledge to inform this co-operative water program implementation and reform. This paper uses knowledge sharing, translation and feedback features of collaboration as a way to assess knowledge work practices during key phases of the water planning process. This enabled a systematic review of knowledge work practices in partnership with collaborative water planning groups established to inform water quality program investment decisions in the GBR’s Wet Tropics region. This research builds on the growing academic and policy interest in the conditions required to enable different types of knowledge to be successfully used for policy-making by focusing on when, how and why knowledge work to meet these conditions is required.
Resumo:
Senescence and genomic integrity are thought to be important barriers in the development of malignant lesions. Human fibroblasts undergo a limited number of cell divisions before entering an irreversible arrest, called senescence. Here we show that human mammary epithelial cells (HMECs) do not conform to this paradigm of senescence. In contrast to fibroblasts, HMECs exhibit an initial growth phase that is followed by a transient growth plateau (termed selection or M0; refs 3-5), from which proliferative cells emerge to undergo further population doublings (approximately 20-70), before entering a second growth plateau (previously termed senescence or M1; refs 4-6). We find that the first growth plateau exhibits characteristics of senescence but is not an insurmountable barrier to further growth. HMECs emerge from senescence, exhibit eroding telomeric sequences and ultimately enter telomere-based crisis to generate the types of chromosomal abnormalities seen in the earliest lesions of breast cancer. Growth past senescent barriers may be a pivotal event in the earliest steps of carcinogenesis, providing many genetic changes that predicate oncogenic evolution. The differences between epithelial cells and fibroblasts provide new insights into the mechanistic basis of neoplastic transformation.
Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence
Resumo:
The genomic changes that foster cancer can be either genetic or epigenetic in nature. Early studies focused on genetic changes and how mutational events contribute to changes in gene expression. These point mutations, deletions and amplifications are known to activate oncogenes and inactivate tumor suppressor genes. More recently, multiple epigenetic changes that can have a profound effect on carcinogenesis have been identified. These epigenetic events, such as the methylation of promoter sequences in genes, are under active investigation. In this review we will describe a methylation event that occurs during the propagation of human mammary epithelial cells (HMEC) in culture and detail the accompanying genetic alterations that have been observed.
Resumo:
M. fortuitum is a rapidly growing mycobacterium associated with community-acquired and nosocomial wound, soft tissue, and pulmonary infections. It has been postulated that water has been the source of infection especially in the hospital setting. The aim of this study was to determine if municipal water may be the source of community-acquired or nosocomial infections in the Brisbane area. Between 2007 and 2009, 20 strains of M. fortuitum were recovered from municipal water and 53 patients’ isolates were submitted to the reference laboratory. A wide variation in strain types was identified using repetitive element sequence-based PCR, with 13 clusters of ≥2 indistinguishable isolates, and 28 patterns consisting of individual isolates. The clusters could be grouped into seven similar groups (>95% similarity). Municipal water and clinical isolates collected during the same time period and from the same geographical area consisted of different strain types, making municipal water an unlikely source of sporadic human infection.
Resumo:
Mycobacterium kansasii is a pulmonary pathogen that has been grown readily from municipal water, but rarely isolated from natural waters. A definitive link between water exposure and disease has not been demonstrated and the environmental niche for this organism is poorly understood. Strain typing of clinical isolates has revealed seven subtypes with Type 1 being highly clonal and responsible for most infections worldwide. The prevalence of other subtypes varies geographically. In this study 49 water isolates are compared with 72 patient isolates from the same geographical area (Brisbane, Australia), using automated repetitive unit PCR (Diversilab) and ITS RFLP. The clonality of the dominant clinical strain type is again demonstrated but with rep-PCR, strain variation within this group is evident comparable with other reported methods. There is significant heterogeneity of water isolates and very few are similar or related to the clinical isolates. This suggests that if water or aerosol transmission is the mode of infection, then point source contamination likely occurs from an alternative environmental source.
Resumo:
Background How accurately do people perceive extreme water speeds and how does their perception affect perceived risk? Prior research has focused on the characteristics of moving water that can reduce human stability or balance. The current research presents the first experiment on people's perceptions of risk and moving water at different speeds and depths. Methods Using a randomized within-person 2 (water depth: 0.45, 0.90 m) ×3 (water speed: 0.4, 0.8, 1.2 m/s) experiment, we immersed 76 people in moving water and asked them to estimate water speed and the risk they felt. Results Multilevel modeling showed that people increasingly overestimated water speeds as actual water speeds increased or as water depth increased. Water speed perceptions mediated the direct positive relationship between actual water speeds and perceptions of risk; the faster the moving water, the greater the perceived risk. Participants' prior experience with rip currents and tropical cyclones moderated the strength of the actual–perceived water speed relationship; consequently, mediation was stronger for people who had experienced no rip currents or fewer storms. Conclusions These findings provide a clearer understanding of water speed and risk perception, which may help communicate the risks associated with anticipated floods and tropical cyclones.
Resumo:
IODP Expedition 339 drilled five sites in the Gulf of Cadiz and two off the west Iberian margin (November 2011 to January 2012), and recovered 5.5 km of sediment cores with an average recovery of 86.4%. The Gulf of Cadiz was targeted for drilling as a key location for the investigation of Mediterranean outflow water (MOW) through the Gibraltar Gateway and its influence on global circulation and climate. It is also a prime area for understanding the effects of tectonic activity on evolution of the Gibraltar Gateway and on margin sedimentation. We penetrated into the Miocene at two different sites and established a strong signal of MOW in the sedimentary record of the Gulf of Cadiz, following the opening of the Gibraltar Gateway. Preliminary results show the initiation of contourite deposition at 4.2–4.5 Ma, although subsequent research will establish whether this dates the onset of MOW. The Pliocene succession, penetrated at four sites, shows low bottom current activity linked with a weak MOW. Significant widespread unconformities, present in all sites but with hiatuses of variable duration, are interpreted as a signal of intensified MOW, coupled with flow confinement. The Quaternary succession shows a much more pronounced phase of contourite drift development, with two periods of MOW intensification separated by a widespread unconformity. Following this, the final phase of drift evolution established the contourite depositional system (CDS) architecture we see today. There is a significant climate control on this evolution of MOW and bottom-current activity. However, from the closure of the Atlantic–Mediterranean gateways in Spain and Morocco just over 6 Ma and the opening of the Gibraltar Gateway at 5.3 Ma, there has been an even stronger tectonic control on margin development, downslope sediment transport and contourite drift evolution. The Gulf of Cadiz is the world's premier contourite laboratory and thus presents an ideal testing ground for the contourite paradigm. Further study of these contourites will allow us to resolve outstanding issues related to depositional processes, drift budgets, and recognition of fossil contourites in the ancient record on shore. The expedition also verified an enormous quantity and extensive distribution of contourite sands that are clean and well sorted. These represent a relatively untapped and important exploration target for potential oil and gas reservoirs.
Resumo:
"This multi-disciplinary book provides practical solutions for safeguarding the sustainability of the urban water environment. Firstly, the importance of the urban water environment is highlighted and the major problems urban water bodies face and strategies to safeguard the water environment are explored. Secondly, the diversity of pollutants entering the water environment through stormwater runoff are discussed and modelling approaches for factoring in climate change and future urban and transport scenarios are proposed. Thirdly, by linking the concepts of sustainable urban ecosystems and sustainable urban and transport development, capabilities of two urban sustainability assessment models are demonstrated."--publisher website
Resumo:
An important responsibility of the Environment Protection Authority, Victoria, is to set objectives for levels of environmental contaminants. To support the development of environmental objectives for water quality, a need has been identified to understand the dual impacts of concentration and duration of a contaminant on biota in freshwater streams. For suspended solids contamination, information reported by Newcombe and Jensen [ North American Journal of Fisheries Management , 16(4):693--727, 1996] study of freshwater fish and the daily suspended solids data from the United States Geological Survey stream monitoring network is utilised. The study group was requested to examine both the utility of the Newcombe and Jensen and the USA data, as well as the formulation of a procedure for use by the Environment Protection Authority Victoria that takes concentration and duration of harmful episodes into account when assessing water quality. The extent to which the impact of a toxic event on fish health could be modelled deterministically was also considered. It was found that concentration and exposure duration were the main compounding factors on the severity of effects of suspended solids on freshwater fish. A protocol for assessing the cumulative effect on fish health and a simple deterministic model, based on the biology of gill harm and recovery, was proposed. References D. W. T. Au, C. A. Pollino, R. S. S Wu, P. K. S. Shin, S. T. F. Lau, and J. Y. M. Tang. Chronic effects of suspended solids on gill structure, osmoregulation, growth, and triiodothyronine in juvenile green grouper epinephelus coioides . Marine Ecology Press Series , 266:255--264, 2004. J.C. Bezdek, S.K. Chuah, and D. Leep. Generalized k-nearest neighbor rules. Fuzzy Sets and Systems , 18:237--26, 1986. E. T. Champagne, K. L. Bett-Garber, A. M. McClung, and C. Bergman. {Sensory characteristics of diverse rice cultivars as influenced by genetic and environmental factors}. Cereal Chem. , {81}:{237--243}, {2004}. S. G. Cheung and P. K. S. Shin. Size effects of suspended particles on gill damage in green-lipped mussel perna viridis. Marine Pollution Bulletin , 51(8--12):801--810, 2005. D. H. Evans. The fish gill: site of action and model for toxic effects of environmental pollutants. Environmental Health Perspectives , 71:44--58, 1987. G. C. Grigg. The failure of oxygen transport in a fish at low levels of ambient oxygen. Comp. Biochem. Physiol. , 29:1253--1257, 1969. G. Holmes, A. Donkin, and I.H. Witten. {Weka: A machine learning workbench}. In Proceedings of the Second Australia and New Zealand Conference on Intelligent Information Systems , volume {24}, pages {357--361}, {Brisbane, Australia}, {1994}. {IEEE Computer Society}. D. D. Macdonald and C. P. Newcombe. Utility of the stress index for predicting suspended sediment effects: response to comments. North American Journal of Fisheries Management , 13:873--876, 1993. C. P. Newcombe. Suspended sediment in aquatic ecosystems: ill effects as a function of concentration and duration of exposure. Technical report, British Columbia Ministry of Environment, Lands and Parks, Habitat Protection branch, Victoria, 1994. C. P. Newcombe and J. O. T. Jensen. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. North American Journal of Fisheries Management , 16(4):693--727, 1996. C. P. Newcombe and D. D. Macdonald. Effects of suspended sediments on aquatic ecosystems. North American Journal of Fisheries Management , 11(1):72--82, 1991. K. Schmidt-Nielsen. Scaling. Why is animal size so important? Cambridge University Press, NY, 1984. J. S. Schwartz, A. Simon, and L. Klimetz. Use of fish functional traits to associate in-stream suspended sediment transport metrics with biological impairment. Environmental Monitoring and Assessment , 179(1--4):347--369, 2011. E. Al Shaw and J. S. Richardson. Direct and indirect effects of sediment pulse duration on stream invertebrate assemb ages and rainbow trout ( Oncorhynchus mykiss ) growth and survival. Canadian Journal of Fish and Aquatic Science , 58:2213--2221, 2001. P. Tiwari and H. Hasegawa. {Demand for housing in Tokyo: A discrete choice analysis}. Regional Studies , {38}:{27--42}, {2004}. Y. Tramblay, A. Saint-Hilaire, T. B. M. J. Ouarda, F. Moatar, and B Hecht. Estimation of local extreme suspended sediment concentrations in california rivers. Science of the Total Environment , 408:4221--
Resumo:
Access to clean water is essential for human life and a critical issue facing much of modern society, especially as a result of the 21st Century triad of challenges – population growth, resource scarcity and pollution – which contribute to the rising complexity of providing adequate access to this essential resource for large parts of society. As such, there is now an increasing need for innovative solutions to source, treat and distribute water to cities across the globe. This position paper explores biomimicry – emulating natural form, function, process and systems – as an alternative and sustainable design approach to traditional water infrastructure systems. The key barriers to innovations such as biomimicry are summarised, indicating that regulatory and economic grounds are some of the major hindrances to integrating alternative design approaches in the water sector in developed countries. This paper examines some of the benefits of moving past these barriers to develop sustainable, efficient and resilient solutions that provide adequate access to water in the face of contemporary challenges.
Resumo:
The occurrence of extreme water levels along low-lying, highly populated and/or developed coastlines can lead to considerable loss of life and billions of dollars of damage to coastal infrastructure. Therefore it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood management, engineering and future land-use planning. This ensures the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. This paper estimates for the first time present day extreme water level exceedence probabilities around the whole coastline of Australia. A high-resolution depth averaged hydrodynamic model has been configured for the Australian continental shelf region and has been forced with tidal levels from a global tidal model and meteorological fields from a global reanalysis to generate a 61-year hindcast of water levels. Output from this model has been successfully validated against measurements from 30 tide gauge sites. At each numeric coastal grid point, extreme value distributions have been fitted to the derived time series of annual maxima and the several largest water levels each year to estimate exceedence probabilities. This provides a reliable estimate of water level probabilities around southern Australia; a region mainly impacted by extra-tropical cyclones. However, as the meteorological forcing used only weakly includes the effects of tropical cyclones, extreme water level probabilities are underestimated around the western, northern and north-eastern Australian coastline. In a companion paper we build on the work presented here and more accurately include tropical cyclone-induced surges in the estimation of extreme water level. The multi-decadal hindcast generated here has been used primarily to estimate extreme water level exceedance probabilities but could be used more widely in the future for a variety of other research and practical applications.
Resumo:
The incidence of major storm surges in the last decade have dramatically emphasized the immense destructive capabilities of extreme water level events, particularly when driven by severe tropical cyclones. Given this risk, it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood and erosion management, engineering and for future land-use planning and to ensure the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. Australia has a long history of coastal flooding from tropical cyclones. Using a novel integration of two modeling techniques, this paper provides the first estimates of present day extreme water level exceedance probabilities around the whole coastline of Australia, and the first estimates that combine the influence of astronomical tides, storm surges generated by both extra-tropical and tropical cyclones, and seasonal and inter-annual variations in mean sea level. Initially, an analysis of tide gauge records has been used to assess the characteristics of tropical cyclone-induced surges around Australia. However, given the dearth (temporal and spatial) of information around much of the coastline, and therefore the inability of these gauge records to adequately describe the regional climatology, an observationally based stochastic tropical cyclone model has been developed to synthetically extend the tropical cyclone record to 10,000 years. Wind and pressure fields derived for these synthetically generated events have then been used to drive a hydrodynamic model of the Australian continental shelf region with annual maximum water levels extracted to estimate exceedance probabilities around the coastline. To validate this methodology, selected historic storm surge events have been simulated and resultant storm surges compared with gauge records. Tropical cyclone induced exceedance probabilities have been combined with estimates derived from a 61-year water level hindcast described in a companion paper to give a single estimate of present day extreme water level probabilities around the whole coastline of Australia. Results of this work are freely available to coastal engineers, managers and researchers via a web-based tool (www.sealevelrise.info). The described methodology could be applied to other regions of the world, like the US east coast, that are subject to both extra-tropical and tropical cyclones.
Resumo:
This paper reports a study of ion exchange (IX) as an alternative CSG water treatment to the widely used reverse osmosis (RO) desalination process. An IX pilot plant facility has been constructed and operated using both synthetic and real CSG water samples. Application of appropriate synthetic resin technology has proved the effectiveness of IX processes.
Resumo:
Preserving the integrity of the skin's outermost layer (the epidermis) is vital for humans to thrive in hostile surroundings. Covering the entire body, the epidermis forms a thin but impenetrable cellular cordon that repels external assaults and blocks escape of water and electrolytes from within. This structure exists in a perpetual state of regeneration where the production of new cellular subunits at the base of the epidermis is offset by the release of terminally differentiated corneocytes from the surface. It is becoming increasingly clear that proteases hold vital roles in assembling and maintaining the epidermal barrier. More than 30 proteases are expressed by keratinocytes or infiltrating immune cells and the activity of each must be maintained within narrow limits and confined to the correct time and place. Accordingly, over- or under-exertion of proteolytic activity is a common factor in a multitude of skin disorders that range in severity from relatively mild to life-threatening. This review explores the current state of knowledge on the involvement of proteases in skin diseases and the latest findings from proteomic and transcriptomic studies focused on uncovering novel (patho)physiological roles for these enzymes.