984 resultados para Walker, Derrick
Resumo:
In this study, the authors propose a novel video stabilisation algorithm for mobile platforms with moving objects in the scene. The quality of videos obtained from mobile platforms, such as unmanned airborne vehicles, suffers from jitter caused by several factors. In order to remove this undesired jitter, the accurate estimation of global motion is essential. However it is difficult to estimate global motions accurately from mobile platforms due to increased estimation errors and noises. Additionally, large moving objects in the video scenes contribute to the estimation errors. Currently, only very few motion estimation algorithms have been developed for video scenes collected from mobile platforms, and this paper shows that these algorithms fail when there are large moving objects in the scene. In this study, a theoretical proof is provided which demonstrates that the use of delta optical flow can improve the robustness of video stabilisation in the presence of large moving objects in the scene. The authors also propose to use sorted arrays of local motions and the selection of feature points to separate outliers from inliers. The proposed algorithm is tested over six video sequences, collected from one fixed platform, four mobile platforms and one synthetic video, of which three contain large moving objects. Experiments show our proposed algorithm performs well to all these video sequences.
Resumo:
Strengthening cooperation between schools and parents is critical to improving learning outcomes for children. The chapter focuses on parental engagement in their children’s education in the early years of school. It considers issues of social and cultural capital as important to whether, or not, parents are involved in their children’s schooling. Analyses of data from a national representative sample of children and their families who participate in Growing up in Australia: The Longitudinal Study of Australian Children are presented. Results indicated that higher family socio-economic position was associated with higher levels of parental involvement and higher expectations about children’s future level of education.
Resumo:
To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4R24C/R24C/NrasQ61K mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.
Resumo:
In recent years the air transport industry has experienced unprecedented growth, driven by strong local and global economies. Whether this growth can continue in the face of anticipated oil crises; international economic forecasts and recent influenza outbreaks is yet to be seen. One thing is certain, airport owners and operators will continue to be faced with challenging environments in which to do business. In response, many airports recognize the value in diversifying their revenue streams through a variety of landside property developments within the airport boundary. In Australia it is the type and intended market of this development that is a point of contention between private airport corporations and their surrounding municipalities. The aim of this preliminary research is to identify and categorize on-airport development occurring at the twenty-two privatized Australian airports which are administered under the Airports Act [1996]. This new knowledge will assist airport and municipal planners in understanding the current extent and category of on-airport land use, allowing them to make better decisions when proposing development both within airport master plans and beyond the airport boundary in local town and municipal plans.
Resumo:
The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrrolidine, piperidine, isoindoline, and azaphenalene) were determined experimentally by cyclic voltammetry in acetonitrile, and also via high-level ab initio molecular orbital calculations. It is shown that the potentials are influenced by the type of ring system, ring substituents and/or groups surrounding the radical moiety. For the pyrrolidine, piperidine, and isoindolines there is excellent agreement (mean absolute deviation of 0.05 V) between the calculated and experimental oxidation potentials; for the azaphenalenes, however, there is an extraordinary discrepancy (mean absolute deviation of 0.60 V), implying that their one-electron oxidation might involve additional processes not considered in the theoretical calculations. This recently developed azaphenalene class of nitroxide represents a new variant of a nitroxide ring fused to an aromatic system and details of the synthesis of five derivatives involving differing aryl substitution are also presented.
Resumo:
Background: It has been proposed that adenosine triphosphate (ATP) released from red blood cells (RBCs) may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC). Results: Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P < 0.05), and remained at this higher level 180 seconds into exercise (P < 0.05 versus rest). The increase in ATP was mirrored by a decrease in venous oxygen content. While there was no significant relationship between ATP concentration and venous oxygen content at 30 seconds of exercise, they were moderately and inversely correlated at 180 seconds of exercise (r = -0.651, P = 0.021). Arterial ATP concentration remained unchanged throughout exercise, resulting in an increase in the venous-arterial ATP difference. Conclusions: Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.
Resumo:
The following paper presents an evaluation of airborne sensors for use in vegetation management in powerline corridors. Three integral stages in the management process are addressed including, the detection of trees, relative positioning with respect to the nearest powerline and vegetation height estimation. Image data, including multi-spectral and high resolution, are analyzed along with LiDAR data captured from fixed wing aircraft. Ground truth data is then used to establish the accuracy and reliability of each sensor thus providing a quantitative comparison of sensor options. Tree detection was achieved through crown delineation using a Pulse-Coupled Neural Network (PCNN) and morphologic reconstruction applied to multi-spectral imagery. Through testing it was shown to achieve a detection rate of 96%, while the accuracy in segmenting groups of trees and single trees correctly was shown to be 75%. Relative positioning using LiDAR achieved a RMSE of 1.4m and 2.1m for cross track distance and along track position respectively, while Direct Georeferencing achieved RMSE of 3.1m in both instances. The estimation of pole and tree heights measured with LiDAR had a RMSE of 0.4m and 0.9m respectively, while Stereo Matching achieved 1.5m and 2.9m. Overall a small number of poles were missed with detection rates of 98% and 95% for LiDAR and Stereo Matching.
Resumo:
The accuracy of cause-of-death statistics substantially depends on the quality of cause-of-death information in death certificates, primarily completed by medical doctors. Deficiencies in cause-of-death certification have been observed across the world, and over time. Despite educational interventions targeting to improve the quality of death certification, their intended impacts are rarely evaluated. This review aims to provide empirical evidence that could guide the modification of existing educational programs, or the development of new interventions, which are necessary to improve the capacity of certifiers as well as the quality of cause-of-death certification, and thereby, the quality of mortality statistics.
Resumo:
This project aims to develop a methodology for designing and conducting a systems engineering analysis to build and fly continuously, day and night, propelled uniquely by solar energy for one week with a 0.25Kg payload consuming 0.5 watt without fuel or pollution. An airplane able to fly autonomously for many days could find many applications. Including coastal or border surveillance, atmospherical and weather research and prediction, environmental, forestry, agricultural, and oceanic monitoring, imaging for the media and real-estate industries, etc. Additional advantages of solar airplanes are their low cost and the simplicity with which they can be launched. For example, in the case of potential forest fire risks during a warm and dry period, swarms of solar airplanes, easily launched with the hand, could efficiently monitor a large surface, reporting rapidly any fire starts. This would allow a fast intervention and thus reduce the cost of such disaster, in terms of human and material losses. At higher dimension, solar HALE platforms are expected to play a major role as communication relays and could replace advantageously satellites in a near future.
Resumo:
Background: The systematic collection of high-quality mortality data is a prerequisite in designing relevant drowning prevention programmes. This descriptive study aimed to assess the quality (i.e., level of specificity) of cause-of-death reporting using ICD-10 drowning codes across 69 countries.---------- Methods: World Health Organization (WHO) mortality data were extracted for analysis. The proportion of unintentional drowning deaths coded as unspecified at the 3-character level (ICD-10 code W74) and for which the place of occurrence was unspecified at the 4th character (.9) were calculated for each country as indicators of the quality of cause-of-death reporting.---------- Results: In 32 of the 69 countries studied, the percentage of cases of unintentional drowning coded as unspecified at the 3-character level exceeded 50%, and in 19 countries, this percentage exceeded 80%; in contrast, the percentage was lower than 10% in only 10 countries. In 21 of the 56 countries that report 4-character codes, the percentage of unintentional drowning deaths for which the place of occurrence was unspecified at the 4th character exceeded 50%, and in 15 countries, exceeded 90%; in only 14 countries was this percentage lower than 10%.---------- Conclusion: Despite the introduction of more specific subcategories for drowning in the ICD-10, many countries were found to be failing to report sufficiently specific codes in drowning mortality data submitted to the WHO.
Resumo:
This paper introduces a novel strategy for the specification of airworthiness certification categories for civil unmanned aircraft systems (UAS). The risk-based approach acknowledges the fundamental differences between the risk paradigms of manned and unmanned aviation. The proposed airworthiness certification matrix provides a systematic and objective structure for regulating the airworthiness of a diverse range of UAS types and operations. An approach for specifying UAS type categories is then discussed. An example of the approach, which includes the novel application of data-clustering algorithms, is presented to illustrate the discussion.
Resumo:
In recent years, unmanned aerial vehicles (UAVs) have been widely used in combat, and their potential applications in civil and commercial roles are also receiving considerable attention by industry and the research community. There are numerous published reports of UAVs used in Earth science missions [1], fire-fighting [2], and border security [3] trials, with other speculative deployments, including applications in agriculture, communications, and traffic monitoring. However, none of these UAVs can demonstrate an equivalent level of safety to manned aircraft, particularly in the case of an engine failure, which would require an emergency or forced landing. This may be arguably the main factor that has prevented these UAV trials from becoming full-scale commercial operations, as well as restricted operations of civilian UAVs to only within segregated airspace.
Resumo:
The Velocity Sourced Series Elastic Actuator has been proposed as a method for providing safe force or torque based actuation for robots without compromising the actuator performance. In this paper we assess the safety of Velocity Sourced Series Elastic Actuators by measuring the Head Injury Criterion scores for collisions with a model head. The study makes a comparative analysis against stiff, high impedance actuation using the same motor without the series elastic component, showing that the series elastic component brings about a massive reduction in the chance of head injury. The benefits of a collision detection and safe reaction system are shown to be limited to collisions at low speeds, providing greater interaction comfort but not necessarily contributing to safety from injury.
Resumo:
Approaches with Vertical Guidance (APV) can provide greater safety and cost savings to general aviation through accurate GPS horizontal and vertical navigation. However, GPS needs augmentation to achieve APV fault detection requirements. Aircraft Based Augmentation Systems (ABAS) fuse GPS with additional sensors at the aircraft. Typical ABAS designs assume high-quality inertial sensors with Kalman filters but these are too expensive for general aviation. Instead of using high-quality (and expensive) sensors, the purpose of this paper is to investigate augmenting GPS with a low-quality MEMS IMU and Aircraft Dynamic Model (ADM). The IMU and ADM are fused together using a multiple model fusion strategy in a bank of Extended Kalman Filters (EKF) with the Normalized Solution Separation (NSS) fault detection scheme. A tightly-coupled configuration with GPS is used and frequent GPS updates are applied to the IMU and ADM to compensate for their errors. Based upon a simulated APV approach, the performance of this architecture in detecting a GPS ramp fault is investigated showing a performance improvement over a GPS-only “snapshot” implementation of the NSS method. The effect of fusing the IMU with the ADM is evaluated by comparing a GPS-IMU-ADM EKF with a GPS-IMU EKF where a small improvement in protection levels is shown.