962 resultados para WESTERN-BLOT PATTERNS
Resumo:
PURPOSE: Pancreatic carcinoma is highly resistant to therapy. Epidermal growth factor receptor (EGFR) and HER2 have been reported to be both dysregulated in this cancer. To evaluate the in vivo effect of binding both EGFR and HER2 with two therapeutic humanized monoclonal antibodies (mAb), we treated human pancreatic carcinoma xenografts, expressing high EGFR and low HER2 levels. EXPERIMENTAL DESIGN: Nude mice, bearing xenografts of BxPC-3 or MiaPaCa-2 human pancreatic carcinoma cell lines, were injected twice weekly for 4 weeks with different doses of anti-EGFR (matuzumab) and anti-HER2 (trastuzumab) mAbs either alone or in combination. The effect of the two mAbs, on HER receptor phosphorylation, was also studied in vitro by Western blot analysis. RESULTS: The combined mAb treatment significantly inhibited tumor progression of the BxPC-3 xenografts compared with single mAb injection (P = 0.006) or no treatment (P = 0.0004) and specifically induced some complete remissions. The two mAbs had more antitumor effect than 4-fold greater doses of each mAb. The significant synergistic effect of the two mAbs was confirmed on the MiaPaCa-2 xenograft and on another type of carcinoma, SK-OV-3 ovarian carcinoma xenografts. In vitro, the cooperative effect of the two mAbs was associated with a decrease in EGFR and HER2 receptor phosphorylation. CONCLUSIONS: Anti-HER2 mAb has a synergistic therapeutic effect when combined with an anti-EGFR mAb on pancreatic carcinomas with low HER2 expression. These observations may open the way to the use of these two mAbs in a large panel of carcinomas expressing different levels of the two HER receptors.
Resumo:
Background: We demonstrated that DC Bead (Biocompatibles UK, Ltd) could be loaded with sunitinib and injected intra-arterially in the rabbit without unexpected toxicity. The purpose of this study is to evaluate the antitumoral effect of sunitinib eluting beads in the VX2 tumor model of liver cancer. Methods: VX2 tumors were implanted in the left liver lobe of New-Zealand white rabbits. Animals were assigned to 3 groups: Group 1 (n=6) received 1.5mg of sunitinib loaded in 0.05ml of 100-300um DC Bead, group 2 (n=5) received 0.05ml of 100-300um DC Bead, group 3 (n=5) received 0.05ml NaCl 0.9% in the left hepatic artery. One animal in each group was sacrificed at 24 hours and the others were followed for survival until day 15. Liver enzymes were measured daily. In group 1, plasmatic sunitinib concentration were measured daily by LC MS/MS tandem mass spectroscopy. At day 15 all living animals were sacrificed. After sacrifice, the livers were harvested for determination of the VEGF receptor tyrosine kinase activity by western blot and histopathological examination. Results: In group 1, no animals died during follow-up. In group 2, 2 animals died during follow-up on day x. In control group 3, 3 animals died during follow up on day x. In group 1 plasmatic sunitinib levels remained under therapeutic concentration throughout the experiment. Very high concentrations of sunitinib were measured in the liver tissue 24 and 15 days after embolization. Inhibition of the phosphorylation of the RTK was demonstrated at 24h and 15 days in groups 1. Sunitinib eluting beads seemed to penetrate in the tumor more effectively and there was more necrosis around the beads than their bland counterparts. Conclusions: Administration of sunitinib eluting beads in VX2 carrying rabbits resulted invery high drug concentrations at the site of embolization with minimal systemic passage. Despite the very high tissular sunitinib concentration we did not observe any additional toxicity with loaded beads. Sunitinib eluting beads inhibit the activation of RTK's triggered by ischemia and seem to prolong survival of the treated animals. Therefore we consider that local treatment with sunitinib may provide a promising approach for the treatment of liver cancer.
Resumo:
BACKGROUND: Plasmodium vivax circumsporozoite (PvCS) protein is a major sporozoite surface antigen involved in parasite invasion of hepatocytes and is currently being considered as vaccine candidate. PvCS contains a dimorphic central repetitive fragment flanked by conserved regions that contain functional domains. METHODS: We have developed a chimeric 137-mer synthetic polypeptide (PvCS-NRC) that includes the conserved region I and region II-plus and the two natural repeat variants known as VK210 and VK247. The antigenicity of PvCS-NRC was tested using human sera from PNG and Colombia endemic areas and its immunogenicity was confirmed in mice with different genetic backgrounds, the polypeptide formulated either in Alum or GLA-SE adjuvants was assessed in inbred C3H, CB6F1 and outbred ICR mice, whereas a formulation in Montanide ISA51 was tested in C3H mice. RESULTS: Antigenicity studies indicated that the chimeric peptide is recognized by a high proportion (60-70%) of residents of malaria-endemic areas. Peptides formulated with either GLA-SE or Montanide ISA51 adjuvants induced stronger antibody responses as compared with the Alum formulation. Sera from immunized mice as well as antigen-specific affinity purified human IgG antibodies reacted with sporozoite preparations in immunofluorescence and Western blot assays, and displayed strong in vitro inhibition of sporozoite invasion (ISI) into hepatoma cells. CONCLUSIONS: The polypeptide was recognized at high prevalence when tested against naturally induced human antibodies and was able to induce significant immunogenicity in mice. Additionally, specific antibodies were able to recognize sporozoites and were able to block sporozoite invasion in vitro. Further evaluation of this chimeric protein construct in preclinical phase e.g. in Aotus monkeys in order to assess the humoral and cellular immune responses as well as protective efficacy against parasite challenge of the vaccine candidate must be conducted.
Resumo:
Background: HSTL is a rare entity characterized by an infiltration of bone marrow, spleen and liver tissues by neoplastic gammadelta (gd) -more rarely alphabeta (ab)- T cells. Its pathogenesis is poorly understood. Our purpose was to identify the molecular signature of HSTL and explore molecular pathways implicated in its pathogenesis.Methods: Gene expression profiling and array CGH analysis of 10 HSTL samples (7gd, 3ab), 1 HSTL cell line (DERL2), 2 normal gd samples together with 16 peripheral T-cell lymphoma not otherwise specified (PTCL,NOS) and 7 nasal NK/T cell lymphomas were performed.Results: By unsupervised analysis, ab and gdHSTL clustered together remarkably separated from other lymphoma entities. Compared to PTCL, NOS, HSTL overexpresed genes encoding NK-associated molecules, oncogenes (VAV3) and the Sphingosine-1-phosphatase receptor 5 involved in cell trafficking. Compared to normal gd cells, HSTL overexpressed genes encoding NK-cell and multi drug resistance-associated molecules, transcription factors (RHOB), oncogenes (MAFB, FOS, JUN, VAV3) and the tyrosine kinase SYK whereas genes encoding cytotoxic molecules and the tumor suppressor gene AIM1 were among the most downregulated. By immunohistochemistry, SYK was demonstrated on HSTL cells with expression of its phosphorylated form in DERL2 cells by Western blot. Functional studies using a SYK inhibitor revealed a dose dependent increase of apoptotic DERL2 cells suggesting that SYK could be a candidate target for pharmacologic inhibition. Downexpression of AIM1 was validated by qRT-PCR. Methylation analysis of DERL2 genomic DNA treated by bisulfite demonstrated highly methylated CpG islands of AIM1. Genomic profiles confirmed recurrent isochromosome 7q (n=6/9) without alterations at 9q22 and 6q21 containing SYK and AIM1 genes, respectively.Conclusion: The current study identifies a distinct molecular signature for HSTL and highlights oncogenic pathways which offer rationale for exploring new therapeutic options such as SYK inhibitors. It supports the view of gd and ab HSTL as a single entity.
Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain.
Resumo:
In vertebrates, the interconversion of lactate and pyruvate is catalyzed by the enzyme lactate dehydrogenase. Two distinct subunits combine to form the five tetrameric isoenzymes of lactate dehydrogenase. The LDH-5 subunit (muscle type) has higher maximal velocity (Vmax) and is present in glycolytic tissues, favoring the formation of lactate from pyruvate. The LDH-1 subunit (heart type) is inhibited by pyruvate and therefore preferentially drives the reaction toward the production of pyruvate. There is mounting evidence indicating that during activation the brain resorts to the transient glycolytic processing of glucose. Indeed, transient lactate formation during physiological stimulation has been shown by 1H-magnetic resonance spectroscopy. However, since whole-brain arteriovenous studies under basal conditions indicate a virtually complete oxidation of glucose, the vast proportion of the lactate transiently formed during activation is likely to be oxidized. These in vivo data suggest that lactate may be formed in certain cells and oxidized in others. We therefore set out to determine whether the two isoforms of lactate dehydrogenase are localized to selective cell types in the human brain. We report here the production and characterization of two rat antisera, specific for the LDH-5 and LDH-1 subunits of lactate dehydrogenase, respectively. Immunohistochemical, immunodot, and western-blot analyses show that these antisera specifically recognize their homologous antigens. Immunohistochemistry on 10 control cases demonstrated a differential cellular distribution between both subunits in the hippocampus and occipital cortex: neurons are exclusively stained with the anti-LDH1 subunit while astrocytes are stained by both antibodies. These observations support the notion of a regulated lactate flux between astrocytes and neurons.
Resumo:
Data on HTLV-I are scarce in several Southwest Indian Ocean islands except for La Réunion and The Seychelles. The two cases of HTLV-I have been confirmed by Western-Blot in La Réunion, among blood donors. In Seychelles (87 400 inhabitants in 2012), where blood donors and some other cases are screened, HTLV-I was confirmed with a line immune assay in 43 persons and at least 10-20 patients are known to have tropical spastic paraparesia or adult T-cell lymphoma associated with HTLV-I. In the south-west Indian Ocean, a possibly important other issue may be co-infection of HTLV-1 with the Strongyloides stercoralis roundworm, which is endemic in all countries of the region and which can sometimes lead to severe symptomatic infestation.
Resumo:
In ovarian follicles, cumulus cells provide the oocyte with small molecules that permit growth and control maturation. These nutrients reach the germinal cell through gap junction channels, which are present between the cumulus cells and the oocyte, and between the cumulus cells. In this study the involvement of intercellular communication mediated by gap junction channels on oocyte maturation of in vitro cultured bovine cumulus-oocyte complexes (COCs) was investigated. The stages of oocyte maturation were determined by Hoechst 33342 staining, which showed that 90% of COCs placed in the maturation medium for 24 h progress to the metaphase II stage. Bovine COC gap junction communication was disrupted initially using n-alkanols, which inhibit any passage through gap junctions. In the presence of 1-heptanol (3 mmol l(-1)) or octanol (3.0 mmol l(-1) and 0.3 mmol l(-1)), only 29% of the COCs reached metaphase II. Removal of the uncoupling agent was associated with restoration of oocyte maturation, indicating that treatment with n-alkanols was neither cytotoxic nor irreversible. Concentrations of connexin 43 (Cx43), the major gap junction protein expressed in the COCs, were decreased specifically using a recombinant adenovirus expressing the antisense Cx43 cDNA (Ad-asCx43). The efficacy of adenoviral infection was > 95% in cumulus cells evaluated after infection with recombinant adenoviruses expressing the green fluorescence protein. RT-PCR performed on total RNA isolated from Ad-asCx43-infected COCs showed that the rat Cx43 cDNA was transcribed. Western blot analysis revealed a three-fold decrease in Cx43 expression in COCs expressing the antisense RNA for Cx43. Injection of cumulus cells with Lucifer yellow demonstrated further that the resulting lower amount of Cx43 in infected COCs is associated with a two-fold decrease in the extent of coupling between cumulus cells. In addition, oocyte maturation was decreased by 50% in the infected COC cultures. These results indicate that Cx43-mediated communication between cumulus cells plays a crucial role in maturation of bovine oocytes.
Resumo:
A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.
Resumo:
We previously reported that excess of deoxycorticosterone-acetate (DOCA)/salt-induced cardiac hypertrophy in the absence of hypertension in one-renin gene mice. This model allows us to study molecular mechanisms of high-salt intake in the development of cardiovascular remodeling, independently of blood pressure in a high mineralocorticoid state. In this study, we compared the effect of 5-wk low- and high-salt intake on cardiovascular remodeling and cardiac differential gene expression in mice receiving the same amount of DOCA. Differential gene and protein expression was measured by high-density cDNA microarray assays, real-time PCR and Western blot analysis in DOCA-high salt (HS) vs. DOCA-low salt (LS) mice. DOCA-HS mice developed cardiac hypertrophy, coronary perivascular fibrosis, and left ventricular dysfunction. Differential gene and protein expression demonstrated that high-salt intake upregulated a subset of genes encoding for proteins involved in inflammation and extracellular matrix remodeling (e.g., Col3a1, Col1a2, Hmox1, and Lcn2). A major subset of downregulated genes encoded for transcription factors, including myeloid differentiation primary response (MyD) genes. Our data provide some evidence that vascular remodeling, fibrosis, and inflammation are important consequences of a high-salt intake in DOCA mice. Our study suggests that among the different pathogenic factors of cardiac and vascular remodeling, such as hypertension and mineralocorticoid excess and sodium intake, the latter is critical for the development of the profibrotic and proinflammatory phenotype observed in the heart of normotensive DOCA-treated mice.
Resumo:
PURPOSE: The outer limiting membrane (OLM) is considered to play a role in maintaining the structure of the retina through mechanical strength. However, the observation of junction proteins located at the OLM and its barrier permeability properties may suggest that the OLM may be part of the retinal barrier. MATERIAL AND METHODS: Normal and diabetic rat, monkey, and human retinas were used to analyze junction proteins at the OLM. Proteome analyses were performed using immunohistochemistry on sections and flat-mounted retinas and western blotting on protein extracts obtained from laser microdissection of the photoreceptor layers. Semi-thin and ultrastructure analyses were also reported. RESULTS: In the rat retina, in the subapical region zonula occludens-1 (ZO-1), junction adhesion molecule (JAM), an atypical protein kinase C, is present and the OLM shows dense labeling of occludin, JAM, and ZO-1. The presence of occludin has been confirmed using western blot analysis of the microdissected OLM region. In diabetic rats, occludin expression is decreased and glial cells junctions are dissociated. In the monkey retina, occludin, JAM, and ZO-1 are also found in the OLM. Junction proteins have a specific distribution around cone photoreceptors and Müller glia. Ultrastructural analyses suggest that structures like tight junctions may exist between retinal glial Müller cells and photoreceptors. CONCLUSIONS: In the OLM, heterotypic junctions contain proteins from both adherent and tight junctions. Their structure suggests that tight junctions may exist in the OLM. Occludin is present in the OLM of the rat and monkey retina and it is decreased in diabetes. The OLM should be considered as part of the retinal barrier that can be disrupted in pathological conditions contributing to fluid accumulation in the macula.
Resumo:
Neuropathic pain is a common form of chronic pain, and is unsuccessfully alleviated by usual medications. Mounting evidence strongly point at non-neuronal glial cells in the spinal cord as key actors behind the persistence of pain. In particular, a change in the astrocytic capacity to regulate extracellular concentrations of neurotransmitters might account for the strengthened spinal nociceptive neurotransmission. Therefore, we investigated whether spinal expressions of GABA (GAT) and glutamate (EAAT) transporters were affected in the spared nerve injury (SNI) rat model of neuropathic pain. SNI was induced in male Sprague-Dawley rats by a unilateral section of tibial and common peroneal branches of the sciatic nerve, leaving the sural branch untouched. Western-blot analysis was performed to study the expression of GAT-1 and GAT-3 as well as EAAT-1 and EAAT-2, the main astrocytic GABA and glutamate transporters respectively. Seven days post-surgery, a significant increase in GAT-1, GAT-3 and EAAT-1 expressions is detected in both ipsilateral and contralateral sides of lumbar spinal cord in comparison to sham animals. No change in EAAT-2 signal could be detected. Furthermore, the astrocytic reaction parallels the glutamate and GABA transporters changes as we found an increased GFAP expression compared to the sham condition, in both spinal sides. Together, our results indicate that modifications in GABA and glutamate transport may occur along with SNI-associated painful neuropathy and identify spinal neurotransmitter reuptake machinery as a putative pharmacological target in neuropathic pain.
Resumo:
The epithelial sodium channel (ENaC) regulates the sodium reabsorption in the principal cells of collecting duct of the nephron, and is essential for the maintenance of Na+ balance and blood pressure. ENaC is regulated by hormones such as aldosterone and vasopressin, by serine proteases. The functional ENaC channel expressed at the cell surface is a hetemultimeric complex composed by the homologous a, ß and y subunits. Several functional and biochemical studies have provided evidence that the ENaC is a heterotetramer formed by 2a lß and ly subunits. Recently, a channel homologue of ENaC, the acid-sensing ion channel ASIC1 has been crystallized as a homotrimer. This discrepancy in the subunit composition of these two channels of the same family, motivated us to revisit the subunit oligomerization of the purified functional abg EnaC channel complex. His(6)ENaC a ß y subunits were expressed in Xenopus leavis oocytes. The three ENaC subunits copurify on Ni+2-NTA agarose beads in a aßy ENaC complex. On Western blot, the ENaC subunits show typical post-translation modifications associated with a functional channel. Using differentially tagged ENaC subunits, we could demonstrate that 2 different a ENaC co- purify with ß and y subunits, whereas only one single ß and y are detected in the ENaC complex. Comparison of the mass of the aßy ENaC complex on Western blot under non reducing conditions with different ENaC dimeric, trimmeric and tetratemeric concatamers indicate that the ENaC channel complex is a heterotetramer made of 2a-, lß-, and ly ENaC subunits. Our result will certainly not provide the last words on the subunit stoichiometry of the ENaC/ASIC channels, but hopefully will promote the réévaluation of the cASICl crystal structure for its functional relevance. -- Le canal épithélial sodique ENaC est responsable de la réabsorption du sodium dans les cellules principales du tubule collecteur rénal et joue un rôle important dans le maintien de l'homéostasie sodique et le maintien de la pression artérielle. Ce canal est régulé par des hormones telles que l'aldostérone ou la Vasopressine mais également par des sérines protéases. ENaC est un canal multimerique constitué des trois sous-unités homologues a, ß and y. De nombreuses études fonctionnelles et biochimiques ont montré que le canal ENaC fonctionnel exprimé à la surface cellulaire est un canal formé de 4 sous unités avec une stoichiometric préférentielle de 2 sous-unités a, 1 sous-unité ß et 1 sous-unité y. Récemment, la cristallisation du canal sodique sensible au pH acide, ASIC, un autre membre de la famille ENaC/Deg, a mis en évidence un canal homotrimérique. Cette divergence dans la composition en sous-unités formant les complexes ENaC et ASIC, deux canaux de la même famille de gènes, nous a motivé à réinvestiguer le problème de l'oligomérisation du complexe fonctionnel ENaC après purification. Dans ce but le complexe ENaC fait des sous-unités aßy marquées par un épitope His 6 ont été exprimées dans l'ovocyte de Xenopus leavis. Les trois sous-unités aßy du complexe ENaC peuvent être co-purifiées sur des billes d'agarose Ni+2-NTA et montrent les modifications post-traductionnelles attendues pour le complexe fonctionnel ENaC exprimé en surface. Nous avons pu démontrer que ce complexe ENaC fonctionnel, est formé de deux sous-unités a différentes, mais de une seule sous-unité ß et une seule sous-unité y, suggérant un complexe ENaC formé de plus de trois sous-unités. L'estimation de la masse du complexe fonctionnel ENaC par Western blot, en comparaison avec des constructions concatemériques de ENaC faites de 2, 3, ou 4 sous-unités indique que le complexe aßy ENaC fonctionnel est une hétérotétramère composé de 2 sous-unités a, une ß et une y. Ces expériences ne représentent pas le fin d'une controverse quant à la structure des canaux ENaC et ASIC, mais soulèvent la question de la relevance fonctionnelle de la structure tridimentionelle du canal ASIC révélée par crystallographie.
Resumo:
T cell activation by the specific Ag results in dramatic changes of the T cell phenotype that include a rapid and profound down-regulation and degradation of triggered TCRs. In this work, we investigated the fate of the TCR-associated ZAP-70 kinase in Ag-stimulated T cells. T cells stimulated by peptide-pulsed APCs undergo an Ag dose-dependent decrease of the total cellular content of ZAP-70, as detected by FACS analysis and confocal microscopy on fixed and permeabilized T cell-APC conjugates and by Western blot on total cell lysates. The time course of ZAP-70 consumption overlaps with that of zeta-chain degradation, indicating that ZAP-70 is degraded in parallel with TCR internalization and degradation. Pharmacological activation of protein kinase C (PKC) does not induce ZAP-70 degradation, which, on the contrary, requires activation of protein tyrosine kinases. Two lines of evidence indicate that the Ca2+-dependent cysteine protease calpain plays a major role in initiating ZAP-70 degradation: 1) treatment of T cells with cell-permeating inhibitors of calpain markedly reduces ZAP-70 degradation; 2) ZAP-70 is cleaved in vitro by calpain. Our results show that, in the course of T cell-APC cognate interaction, ZAP-70 is rapidly degraded via a calpain-dependent mechanism.
Resumo:
PURPOSE: Apoptosis is known to play a key role in cell death after retinal ischemia. However, little is known about the kinetics of the signaling pathways involved and their contribution to this process. The aim of this study was to determine whether changes in the expression of molecules in the mitochondrial apoptotic pathway might explain the progression of retinal damage following ischemia/reperfusion. METHODS: Retinal ischemia was induced by elevating intraocular pressure in the vitreous cavity to 150 mmHg for a period of 60 min. At time 0, 3 h (early phase), and 24 h (late phase) after reperfusion, the retinas were harvested and modifications in the expression of Bax, Bak, Bcl-2, and Bcl-x(L) as well as caspase-3 and -7, were examined by qPCR and, in some cases, by western blot. RESULTS: qPCR analysis performed at the early phase after ischemia revealed a time dependent decrease in Bax, Bak, and Bcl-x(L) and no alteration in Bcl-2 mRNA expression in response to retinal ischemia. At the protein level, proapoptotic Bax and Bak were not modulated while Bcl-2 and Bcl-x(L) were significantly upregulated. At this stage, the Bax per Bcl-2 and Bax:Bcl-x(L) ratios were not modified. At the late phase of recovery, Bax and Bcl-x(L) mRNAs were downregulated while Bak was increased. Increased Bax:Bcl-2 and Bax:Bcl-x(L) ratios at both the mRNA and protein levels were observed 24 h after the ischemic insult. Analysis of caspases associated with mitochondria-mediated apoptosis revealed a specific increase in the expression of caspase-3 in the ischemic retinas 24 h after reperfusion, and a decrease in the expression of caspase-7. CONCLUSIONS: This study revealed that Bcl-2-related family members were differently regulated in the early and late phases after an ischemic insult. We showed that the Bax:Bcl-2 and Bax:Bcl-x(L) balances were not affected in the initial phases, but the Bax:Bcl-x(L) ratio shifted toward apoptosis during the late phase of recovery. This shift was reinforced by caspase-3 upregulation.
Resumo:
PURPOSE: To evaluate the effect of XG-102 (formerly D-JNKI1), a TAT-coupled dextrogyre peptide that selectively inhibits the c-Jun N-terminal kinase, in the treatment of endotoxin-induced uveitis (EIU). METHODS: EIU was induced in Lewis rats by LPS injection. XG-102 was administered at the time of LPS challenge. The ocular biodistribution of XG-102 was evaluated using immunodetection at 24 hours after either 20 microg/kg IV (IV) or 0.2 microg/injection intravitreous (IVT) administrations in healthy or uveitic eyes. The effect of XG-102 on EIU was evaluated using clinical scoring, infiltration cell quantification, inducible nitric oxide synthase (iNOS) expression and immunohistochemistry, and cytokines and chemokines kinetics at 6, 24, and 48 hours using multiplex analysis on ocular media. Control EIU eyes received vehicle injection IV or IVT. The effect of XG-102 on c-Jun phosphorylation in EIU was evaluated by Western blot in eye tissues. RESULTS: After IVT injection, XG-102 was internalized in epithelial cells from iris/ciliary body and retina and in glial and microglial cells in both healthy and uveitic eyes. After IV injection, XG-102 was concentrated primarily in inflammatory cells of uveitic eyes. Using both routes of administration, XG-102 significantly inhibited clinical signs of EIU, intraocular cell infiltration, and iNOS expression together with reduced phosphorylation of c-Jun. The anti-inflammatory effect of XG-102 was mediated by iNOS, IFN-gamma, IL-2, and IL-13. CONCLUSIONS: This is the first evidence that interfering with the JNK pathway can reduce intraocular inflammation. Local administration of XG-102, a clinically evaluated peptide, may have potential for treating uveitis.