977 resultados para Vladimir Mayakovsky


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, are carried out to obtain rate constants for its bimolecular reaction with ethene, C2H4, in the gas-phase. The reaction is studied over the pressure range 0.13-13.3 kPa (with added SF6) at five temperatures in the range 296-562 K. The second order rate constants, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1))=(-10.55 +/- 0.10) + (3.86 +/- 0.70) kJ mol(-1)/RT ln10. The Arrhenius parameters correspond to a loose transition state and the rate constant at room temperature is 43% of that for SiH2 + C2H4, showing that the deactivating effect of Cl-for-H substitution in the silylene is not large. Quantum chemical calculations of the potential energy surface for this reaction at the G3MP2//B3LYP level show that, as well as 1-chlorosilirane, ethylchlorosilylene is a viable product. The calculations reveal how the added effect of the Cl atom on the divalent state stabilisation of ClSiH influences the course of this reaction. RRKM calculations of the reaction pressure dependence suggest that ethylchlorosilylene should be the main product. The results are compared and contrasted with those of SiH2 and SiCl2 with C2H4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-resolved studies of chlorosilylene, CISiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with trimethylsilane, Me3SiH, in the gas phase. The reaction was studied at total pressures up to 100 torr (with and without added SF6) over the temperature range 297-407 K. The rate constants were found to be pressure independent and gave the following Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-13.97 +/- 0.25) + (12.57 +/- 1.64) kJ mol(-1)/RT In 10. The Arrhenius parameters are consistent with a mechanism involving an intermediate complex, whose rearrangement is the rate-determining step. Quantum chemical calculations of the potential energy surface for this reaction and also the reactions of CISiH with SiH4 and the other methylsilanes support this conclusion. Comparisons of both experiment and theory with the analogous Si-H insertion processes of SiH2 and SiMe2 show that the main factor causing the lower reactivity of ClSiH is the secondary energy barrier. The calculations also show the existence of a novel intramolecular H-atom exchange process in the complex of ClSiH with MeSiH3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass allocation to above- and belowground compartments in trees is thought to be affected by growth conditions. To assess the strength of such influences, we sampled six Norway spruce forest stands growing at higher altitudes. Within these stands, we randomly selected a total of 77 Norway spruce trees and measured volume and biomass of stem, above- and belowground stump and all roots over 0.5 cm diameter. A comparison of our observations with models parameterised for lower altitudes shows that models developed for specific conditions may be applicable to other locations. Using our observations, we developed biomass functions (BF) and biomass conversion and expansion factors (BCEF) linking belowground biomass to stem parameters. While both BF and BCEF are accurate in belowground biomass predictions, using BCEF appears more promising as such factors can be readily used with existing forest inventory data to obtain estimates of belowground biomass stock. As an example, we show how BF and BCEF developed for individual trees can be used to estimate belowground biomass at the stand level. In combination with existing aboveground models, our observations can be used to quantify total standing biomass of high altitude Norway spruce stands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chaperone/usher pathway assembles surface virulence organelles of Gram-negative bacteria, consisting of fibers of linearly polymerized protein subunits. Fiber subunits are connected through 'donor strand complementation': each subunit completes the immunoglobulin (Ig)-like fold of the neighboring subunit by donating the seventh β-strand in trans. Whereas the folding of Ig domains is a fast first-order process, folding of Ig modules into the fiber conformation is a slow second-order process. Periplasmic chaperones separate this process in two parts by forming transient complexes with subunits. Interactions between chaperones and subunits are also based on the principle of donor strand complementation. In this study, we have performed mutagenesis of the binding motifs of the Caf1M chaperone and Caf1 capsular subunit from Yersinia pestis and analyzed the effect of the mutations on the structure, stability, and kinetics of Caf1M-Caf1 and Caf1-Caf1 interactions. The results suggest that a large hydrophobic effect combined with extensive main-chain hydrogen bonding enables Caf1M to rapidly bind an early folding intermediate of Caf1 and direct its partial folding. The switch from the Caf1M-Caf1 contact to the less hydrophobic, but considerably tighter and less dynamic Caf1-Caf1 contact occurs via the zip-out-zip-in donor strand exchange pathway with pocket 5 acting as the initiation site. Based on these findings, Caf1M was engineered to bind Caf1 faster, tighter, or both faster and tighter. To our knowledge, this is the first successful attempt to rationally design an assembly chaperone with improved chaperone function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments assimilating the RAPID dataset of deep temperature and salinity profiles at 26.5°N on the western and eastern Atlantic boundaries into a 1° global NEMO ocean model have been performed. The meridional overturning circulation (MOC) is then assessed against the transports calculated directly from observations. The best initialization found for this short period was obtained by assimilating the EN3 upper-ocean hydrography database prior to 2004, after which different methods of assimilating 5-day average RAPID profiles at the western boundary were tested. The model MOC is strengthened by ∼ 2 Sv giving closer agreement with the RAPID array transports, when the western boundary profiles are assimilated only below 900 m (the approximate depth of the Florida Straits, which are not well resolved) and when the T,S observations are spread meridionally from 10 to 35°N along the deep western boundary. The use of boundary-focused covariances has the largest impact on the assimilation results, otherwise using more conventional Gaussian covariances has a very local impact on the MOC at 26°N with strong adverse impacts on the MOC stream function at higher and lower latitudes. Even using boundary-focused covariances only enables the MOC to be strengthened for ∼ 2 years, after which the increased transport of warm waters leads to a negative feedback on water formation in the subpolar gyre which then reduces the MOC. This negative feedback can be mitigated if EN3 hydrography data continue to be assimilated along with the RAPID array boundary data. Copyright © 2012 Royal Meteorological Society and Crown in the right of Canada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-scale ocean transports of heat and freshwater have not been well monitored, and yet the regional budgets of these quantities are important to understanding the role of the oceans in climate and climate change. In contrast, atmospheric heat and freshwater transports are commonly assessed from atmospheric reanalysis products, despite the presence of non-conserving data assimilation based on the wealth of distributed atmospheric observations as constraints. The ability to carry out ocean reanalyses globally at eddy-permitting resolutions of 1/4 ° or better, along with new global ocean observation programs, now makes a similar approach viable for the ocean. In this paper we examine the budgets and transports within a global high resolution ocean model constrained by ocean data assimilation, and compare them with independent oceanic and atmospheric estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1- silacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with trimethylsilane-1-d, Me3SiD, in the gas phase. The reaction was studied at total pressures up to 100 Torr (with and without added SF6) over the temperature range of 295−407 K. The rate constants were found to be pressure independent and gave the following Arrhenius equation: log[(k/(cm3 molecule−1 s−1)] = (−13.22 ± 0.15) + [(13.20 ± 1.00) kJ mol−1]/(RT ln 10). When compared with previously published kinetic data for the reaction of ClSiH with Me3SiH, kinetic isotope effects, kD/kH, in the range from 7.4 (297 K) to 6.4 (407 K) were obtained. These far exceed values of 0.4−0.5 estimated for a single-step insertion process. Quantum chemical calculations (G3MP2B3 level) confirm not only the involvement of an intermediate complex, but also the existence of a low-energy internal isomerization pathway which can scramble the D and H atom labels. By means of Rice−Ramsperger−Kassel−Marcus modeling and a necessary (but small) refinement of the energy surface, we have shown that this mechanism can reproduce closely the experimental isotope effects. These findings provide the first experimental evidence for the isomerization pathway and thereby offer the most concrete evidence to date for the existence of intermediate complexes in the insertion reactions of silylenes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Atlantic meridional overturning circulation in two versions of the NEMO ¼° global ocean model has been compared with the RAPID transport array at 26oN. Both model versions reproduce the mean MOC strength well although the Florida Straits flows differ because the pathway of the Gulf Stream is not strongly constrained at this resolution. Both models however have a mean meridional heat transport of 1.07PW, much lower than the 1.35PW from RAPID observations in Apr04-Oct07. Much of the heat transport discrepancy is due to lower transports in summer across the MidOcean (Bahamas-Africa) section, due to stronger southward geostrophic flows in the top 100m where the water is warmest. Seasonal thermocline changes increase temperature differences across the basin driving stronger geostrophic shear, but this effect is much weaker in the top 100m of the RAPID velocity data. The effect accounts for a reduction of 1.1Sv in MOC and 0.1PW in heat transports. The rest of the discrepancy comes from lower Ekman transports from using ERAInterim winds instead of QuikSCAT, a smaller zonally-varying “Eddy” heat transport component, estimated from repeat XBT sections in the observations, and the southward throughflow in the model. Other differences in depth structure of the model MOC and RAPID observations are described but have much less impact on heat transports.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The huge warming of the Arctic that started in the early 1920s and lasted for almost two decades is one of the most spectacular climate events of the twentieth century. During the peak period 1930–40, the annually averaged temperature anomaly for the area 60°–90°N amounted to some 1.7°C. Whether this event is an example of an internal climate mode or is externally forced, such as by enhanced solar effects, is presently under debate. This study suggests that natural variability is a likely cause, with reduced sea ice cover being crucial for the warming. A robust sea ice–air temperature relationship was demonstrated by a set of four simulations with the atmospheric ECHAM model forced with observed SST and sea ice concentrations. An analysis of the spatial characteristics of the observed early twentieth-century surface air temperature anomaly revealed that it was associated with similar sea ice variations. Further investigation of the variability of Arctic surface temperature and sea ice cover was performed by analyzing data from a coupled ocean–atmosphere model. By analyzing climate anomalies in the model that are similar to those that occurred in the early twentieth century, it was found that the simulated temperature increase in the Arctic was related to enhanced wind-driven oceanic inflow into the Barents Sea with an associated sea ice retreat. The magnitude of the inflow is linked to the strength of westerlies into the Barents Sea. This study proposes a mechanism sustaining the enhanced westerly winds by a cyclonic atmospheric circulation in the Barents Sea region created by a strong surface heat flux over the ice-free areas. Observational data suggest a similar series of events during the early twentieth-century Arctic warming, including increasing westerly winds between Spitsbergen and Norway, reduced sea ice, and enhanced cyclonic circulation over the Barents Sea. At the same time, the North Atlantic Oscillation was weakening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A kinetic isotope effect (kD/kH) of 7.4 has been found for the reaction of chlorosilylene with trimethysilane (Me3SiD vs Me3SiH). Such a value can be accounted for by theoretical modelling, but only if an internal rearrangement of the initially form complex is included in the mechanism. This provides the first concrete evidence for such complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated mechanisms for the Atlantic Meridional Overturning Circulation (AMOC) variability at 26.5° N (other than the Ekman component) that can be related to external forcings, in particular wind variability. Resolution dependence is studied using identical experiments with 1° and 1/4° NEMO model runs over 1960–2010. The analysis shows that much of the variability in the AMOC at 26° N can be related to the wind strength over the North Atlantic, through mechanisms lagged on different timescales. At ~ 1-year lag the January–June difference of mean sea level pressure between high and mid-latitudes in the North Atlantic explains 35–50% of the interannual AMOC variability (with negative correlation between wind strength and AMOC). At longer lead timescales ~ 4 years, strong (weak) winds over the northern North Atlantic (specifically linked to the NAO index) are followed by higher (lower) AMOC transport, but this mechanism only works in the 1/4° model. Analysis of the density correlations suggests an increase (decrease) in deep water formation in the North Atlantic subpolar gyre to be the cause. Therefore another 30% of the AMOC variability at 26° N can be related to density changes in the top 1000 m in the Labrador and Irminger seas occurring ~ 4 years earlier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n = 30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cosmic ray fluxes in the atmosphere were recorded during balloon flights in October 2014 in northern Murmansk region, Apatity (Russia; 67o33’N, 33o24’E), in Antarctica (observatory Mirny; 66o33’S, 93o00’E), in Moscow (Russia; 55o45’N, 37o37’E), in Reading (United King-dom; 51o27’N, 0o 58’W), in Mitzpe-Ramon (Israel; 30o36’N, 34o48’E) and in Zaragoza (Spain; 41o9’N, 0o54’W). Two type of cosmic ray detectors were used, namely, (1) the standard ra-diosonde and its modification constructed at the Lebedev Physical Institute (Moscow, Russia) and (2) the device manufactured at the Reading University (Reading, United Kingdom). We compare and analyze obtained data and focus on the estimation of the cosmic ray latitudinal effect in the atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider bipartitions of one-dimensional extended systems whose probability distribution functions describe stationary states of stochastic models. We define estimators of the information shared between the two subsystems. If the correlation length is finite, the estimators stay finite for large system sizes. If the correlation length diverges, so do the estimators. The definition of the estimators is inspired by information theory. We look at several models and compare the behaviors of the estimators in the finite-size scaling limit. Analytical and numerical methods as well as Monte Carlo simulations are used. We show how the finite-size scaling functions change for various phase transitions, including the case where one has conformal invariance.